| Name of number
|
Hyper-E Notation (definition)
|
Scientific notation or Arrow notation (exact value)
|
Fast-growing hierarchy
|
Slow-growing hierarchy
|
| Grangolbit
|
E[2]100#100
|
\(\underbrace{2^{...^{2^{100}}}}_{100\quad 2's}\)
|
f3(100)
|
\(g_{\varepsilon_\omega}(10)\)
|
| Grangolbyte
|
E[8]100#100
|
\(\underbrace{8^{...^{8^{100}}}}_{100\quad 8's}\)
|
f3(100)
|
\(g_{\varepsilon_\omega}(10)\)
|
| Grangol
|
E100#100
|
\(\underbrace{10^{...^{10^{100}}}}_{100\quad 10's}\)
|
f3(100)
|
\(g_{\varepsilon_\omega}(10)\)
|
| Grangolplex
|
E(E100#100) = E100#101
|
\(\underbrace{10^{...^{10^{100}}}}_{101\quad 10's}\)
|
f3(103)
|
\(g_{\varepsilon_\omega^{\varepsilon_\omega}}(10)\)
|
| Giggolchime
|
E1#1,000
|
\(10\uparrow^2 10^{3}\)
|
f3(999)
|
\(g_{\varepsilon_{\omega^2}}(10)\)
|
| Grangolchime
|
E1,000#1,000
|
\(\underbrace{10^{...^{10^{1,000}}}}_{1,000\quad 10's}\)
|
f3(1000)
|
\(g_{\varepsilon_{\omega^2}}(10)\)
|
| Giggoltoll
|
E1#10,000
|
\(10\uparrow^2 10^{4}\)
|
f3(9999)
|
\(g_{\varepsilon_{\omega^3}}(10)\)
|
| Grangoltoll
|
E10,000#10,000
|
\(\underbrace{10^{...^{10^{10^4}}}}_{10^4+1\quad 10's}\)
|
f3(10,000)
|
\(g_{\varepsilon_{\omega^3}}(10)\)
|
| Giggolgong
|
E1#100,000
|
\(10\uparrow^2 10^{5}\)
|
f3(99,999)
|
\(g_{\varepsilon_{\omega^4}}(10)\)
|
| Grangolgong
|
E100,000#100,000
|
\(\underbrace{10^{...^{10^{10^5}}}}_{10^5+1\quad 10's}\)
|
f3(100,000)
|
\(g_{\varepsilon_{\omega^4}}(10)\)
|
| Giggolbong
|
E1#100,000,000
|
\(10\uparrow^2 10^{8}\)
|
f3(108-1)
|
\(g_{\varepsilon_{\omega^7}}(10)\)
|
| Grangolbong
|
E100,000,000#100,000,000
|
\(\underbrace{10^{...^{10^{10^8}}}}_{10^8+1\quad 10's}\)
|
f3(108)
|
\(g_{\varepsilon_{\omega^7}}(10)\)
|
| Dialogialogue
|
E1#(10^10)
|
\(10\uparrow^2 10^{10}\)
|
f3(1010-1)
|
\(g_{\varepsilon_{\omega^\omega}}(10)\)
|
| giggolthrong
|
E1#100,000,000,000
|
\(10\uparrow^2 10^{11}\)
|
f3(1011-1)
|
\(g_{\varepsilon_{\omega^{\omega+1}}}(10)\)
|
| grangolthrong
|
E100,000,000,000#100,000,000,000
|
\(\underbrace{10^{...^{10^{10^{11}}}}}_{10^{11}+1\quad 10's}\)
|
f3(1011)
|
\(g_{\varepsilon_{\omega^{\omega+1}}}(10)\)
|
| guppylogue
|
E1#(10^20)
|
\(10\uparrow^2 10^{20}\)
|
f3(f2(60))
|
\(g_{\varepsilon_{\omega^{\omega\times2}}}(10)\)
|
| minnowlogue
|
E1#(10^25)
|
\(10\uparrow^2 10^{25}\)
|
f3(f2(76))
|
\(g_{\varepsilon_{\omega^{\omega\times2+5}}}(10)\)
|
| gobylogue
|
E1#(10^35)
|
\(10\uparrow^2 10^{35}\)
|
f3(f2(109))
|
\(g_{\varepsilon_{\omega^{\omega\times3+5}}}(10)\)
|
| gogologue
|
E1#(10^50)
|
\(10\uparrow^2 10^{50}\)
|
f3(f2(158))
|
\(g_{\varepsilon_{\omega^{\omega\times5}}}(10)\)
|
| ogologue
|
E1#(10^80)
|
\(10\uparrow^2 10^{80}\)
|
f3(f2(257))
|
\(g_{\varepsilon_{\omega^{\omega\times8}}}(10)\)
|
| googologue
|
E1#(10^100)
|
\(10\uparrow^2 10^{100}\)
|
f3(f2(323))
|
\(g_{\varepsilon_{\omega^{\omega^2}}}(10)\)
|
| googoldex
|
E100#1#2 = E100#(E100) = E100#googol
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{100}\quad 10's}\)
|
f3(f2(323))
|
\(g_{\varepsilon_{\omega^{\omega^2}}}(10)\)
|
| googoldexiplex
|
E(E100#1#2) = E(E100#(E100)) = E(E100#googol) = E100#(googol+1)
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{100}+1\quad 10's}\)
|
f3(f2(323))
|
\(g_{\varepsilon_{\omega^{\omega^2}+1}}(10)\)
|
| googoldexiduplex
|
E(E100#1#2)#2 = E(E100#googol)#2 = E100#(googol+2)
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{100}+2\quad 10's}\)
|
f3(f2(323))
|
\(g_{\varepsilon_{\omega^{\omega^2}+2}}(10)\)
|
| ecetondex
|
E303#1#2 = E303#(E303)
|
\(\underbrace{10^{...^{10^{10^{303}}}}}_{10^{303}\quad 10's}\)
|
f3(f2(996))
|
\(g_{\varepsilon_{\omega^{\omega^2\times3+3}}}(10)\)
|
| trialogialogue
|
E1#(10^10^10)
|
\(10\uparrow^2 10\uparrow^2 3\)
|
f3(f22(30))
|
\(g_{\varepsilon_{\omega^{\omega^{\omega}}}}(10)\)
|
| googolplexilogue
|
E1#(10^10^100)
|
\(10\uparrow^2 10^{10^{100}}\)
|
f3(f22(325))
|
\(g_{\varepsilon_{\omega^{\omega^{\omega^2}}}}(10)\)
|
| googolplexidex
|
E100#2#2 = E100#(E100#2) = E100#googolplex
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{100}}\quad 10's}\)
|
f3(f22(325))
|
\(g_{\varepsilon_{\omega^{\omega^{\omega^2}}}}(10)\)
|
| googolplexidexiplex
|
E100#(1+E100#2)
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{100}}+1\quad 10's}\)
|
f3(f22(325))
|
\(g_{\varepsilon_{\omega^{\omega^{\omega^2}}+1}}(10)\)
|
| googolplexidexiduplex
|
E100#(2+E100#2)
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{100}}+2\quad 10's}\)
|
f3(f22(325))
|
\(g_{\varepsilon_{\omega^{\omega^{\omega^2}}+2}}(10)\)
|
| tetralogialogue
|
E1#(10^10^10^10)
|
\(10\uparrow^2 10\uparrow^2 4\)
|
f3(f23(28))
|
\(g_{\varepsilon_{\omega^{\omega^{\omega^\omega}}}}(10)\)
|
| googolduplexilogue
|
E1#(10^10^10^100)
|
\(10\uparrow^2 10^{10^{10^{100}}}\)
|
f3(f23(325))
|
\(g_{\varepsilon_{\omega^{\omega^{\omega^{\omega^2}}}}}(10)\)
|
| googolduplexidex
|
E100#3#2 = E100#(E100#3) = E100#googolduplex
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{10^{100}}}\quad 10's}\)
|
f3(f23(325))
|
\(g_{\varepsilon_{\omega^{\omega^{\omega^{\omega^2}}}}}(10)\)
|
| pentalogialogue
|
E1#(10^10^10^10^10)
|
\(10\uparrow^2 10\uparrow^2 5\)
|
f3(f24(28))
|
\(g_{\varepsilon_{\omega\uparrow\uparrow5}}(10)\)
|
| googoltriplexilogue
|
E1#(10^10^10^10^100)
|
\(10\uparrow^2 10^{10^{10^{10^{100}}}}\)
|
f3(f24(325))
|
\(g_{\varepsilon_{\omega\uparrow\uparrow5}}(10)\)
|
| googoltriplexidex
|
E100#4#2 = E100#(E100#4) = E100#googoltriplex
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{4\quad 10's}}\)
|
f3(f24(325))
|
\(g_{\varepsilon_{\omega\uparrow\uparrow5}}(10)\)
|
| hexalogialogue
|
E1#(E1#6) = E1#6#2
|
\(10\uparrow^2 10\uparrow^2 6\)
|
f3(f25(28))
|
\(g_{\varepsilon_{\omega\uparrow\uparrow6}}(10)\)
|
| googolquadriplexidex
|
E100#5#2 = E100#(E100#5) = E100#googolquadriplex
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{5\quad 10's}}\)
|
f3(f25(325))
|
\(g_{\varepsilon_{\omega\uparrow\uparrow6}}(10)\)
|
| heptalogialogue
|
E1#7#2
|
\(10\uparrow^2 10\uparrow^2 7\)
|
f3(f26(28))
|
\(g_{\varepsilon_{\omega\uparrow\uparrow7}}(10)\)
|
| googolquintiplexidex
|
E100#6#2 = E100#(E100#6) = E100#googolquintiplex
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{6\quad 10's}}\)
|
f3(f26(325))
|
\(g_{\varepsilon_{\omega\uparrow\uparrow7}}(10)\)
|
| octalogialogue
|
E1#8#2
|
\(10\uparrow^2 10\uparrow^2 8\)
|
f3(f27(28))
|
\(g_{\varepsilon_{\omega\uparrow\uparrow8}}(10)\)
|
| googolsextiplexidex
|
E100#7#2 = E100#(E100#7) = E100#googolsextiplex
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{7\quad 10's}}\)
|
f3(f27(325))
|
\(g_{\varepsilon_{\omega\uparrow\uparrow8}}(10)\)
|
| ennalogialogue
|
E1#9#2 = 10^^10^^9
|
\(10\uparrow^2 10\uparrow^2 9\)
|
f3(f28(28))
|
\(g_{\varepsilon_{\omega\uparrow\uparrow9}}(10)\)
|
| googolseptiplexidex
|
E100#8#2 = E100#(E100#8) = E100#googolseptiplex
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{8\quad 10's}}\)
|
f3(f28(325))
|
\(g_{\varepsilon_{\omega\uparrow\uparrow9}}(10)\)
|
| dekalogialogue, tria-taxis
|
E1#10#2
|
\(10\uparrow^2 10\uparrow^2 10\)
|
f32(9)
|
\(g_{\varepsilon_{\varepsilon_0}}(10)\)
|
| googoloctiplexidex
|
E100#9#2 = E100#(E100#9) = E100#googoloctiplex
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{9\quad 10's}}\)
|
f32(9)
|
\(g_{\varepsilon_{\varepsilon_0}}(10)\)
|
| googolnoniplexidex
|
E100#10#2 = E100#(E100#10) = E100#googolnoniplex
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10\quad 10's}}\)
|
f32(10)
|
\(g_{\varepsilon_{\varepsilon_1}}(10)\)
|
| googoldeciplexidex
|
E100#11#2 = E100#(E100#11) = E100#googoldeciplex
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{11\quad 10's}}\)
|
f32(11)
|
\(g_{\varepsilon_{\varepsilon_2}}(10)\)
|
| hectalogialogue
|
E1#100#2
|
\(10\uparrow^2 10\uparrow^2 100\)
|
f32(99)
|
\(g_{\varepsilon_{\varepsilon_\omega}}(10)\)
|
| grangoldex
|
E100#100#2 = E100#(E100#100) = E100#grangol
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{100\quad 10's}}\)
|
f32(100)
|
\(g_{\varepsilon_{\varepsilon_\omega}}(10)\)
|
| chilialogialogue
|
E1#1000#2
|
\(10\uparrow^2 10\uparrow^2 1000\)
|
f32(999)
|
\(g_{\varepsilon_{\varepsilon_{\omega^2}}}(10)\)
|
| grangoldexichime
|
E1000#1000#2
|
\(\underbrace{10^{...^{10^{10^{1000}}}}}_{\underbrace{10^{...^{10^{10^{1000}}}}}_{1000\quad 10's}}\)
|
f32(1000)
|
\(g_{\varepsilon_{\varepsilon_{\omega^2}}}(10)\)
|
| myrialogialogue
|
E1#10,000#2
|
\(10\uparrow^2 10\uparrow^2 10000\)
|
f32(9999)
|
\(g_{\varepsilon_{\varepsilon_{\omega^3}}}(10)\)
|
| grangoldexitoll
|
E10,000#10,000#2
|
\(\underbrace{10^{...^{10^{10^{10^4}}}}}_{\underbrace{10^{...^{10^{10^{10^4}}}}}_{10^4+1\quad 10's}+1}\)
|
f32(10,000)
|
\(g_{\varepsilon_{\varepsilon_{\omega^3}}}(10)\)
|
| grangoldexigong
|
E100,000#100,000#2 = E100,000#grangolgong
|
\(\underbrace{10^{...^{10^{10^{10^5}}}}}_{\underbrace{10^{...^{10^{10^{10^5}}}}}_{10^5+1\quad 10's}+1}\)
|
f32(100,000)
|
\(g_{\varepsilon_{\varepsilon_{\omega^4}}}(10)\)
|
| octadialogialogue
|
E1#100,000,000#2 = 10^^10^^100,000,000
|
\(10\uparrow^2 10\uparrow^2 10^8\)
|
f32(108-1)
|
\(g_{\varepsilon_{\varepsilon_{\omega^9}}}(10)\)
|
| grangoldexibong
|
E100,000,000#100,000,000#2
|
\(\underbrace{10^{...^{10^{10^{10^8}}}}}_{\underbrace{10^{...^{10^{10^{10^8}}}}}_{10^8+1\quad 10's}+1}\)
|
f32(108)
|
\(g_{\varepsilon_{\varepsilon_{\omega^9}}}(10)\)
|
| grangoldexithrong
|
E100,000,000,000#100,000,000,000#2
|
\(\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{10^{11}+1\quad 10's}+1}\)
|
f32(1011)
|
\(g_{\varepsilon_{\varepsilon_{\omega^{\omega+2}}}}(10)\)
|
| sedeniadialogialogue
|
E1#(10^16)#2
|
\(10\uparrow^2 10\uparrow^2 10^{16}\)
|
f32(1016-1)
|
\(g_{\varepsilon_{\varepsilon_{\omega^{\omega+6}}}}(10)\)
|
| googoldudex
|
E100#1#3
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10^{100}\quad 10's}}\)
|
f32(f2(324))
|
\(g_{\varepsilon_{\varepsilon_{\omega^{\omega^2}}}}(10)\)
|
| ecetondudex
|
E303#1#3 = E303#ecetondex
|
\(\underbrace{10^{...^{10^{10^{303}}}}}_{\underbrace{10^{...^{10^{10^{303}}}}}_{10^{303}\quad 10's}}\)
|
f32(f2(996))
|
\(g_{\varepsilon_{\varepsilon_{\omega^{\omega^2\times3+3}}}}(10)\)
|
| trialogialogialogue
|
E1#3#3
|
\(10\uparrow^2 10\uparrow^2 10\uparrow^2 3\)
|
f32(f22(30))
|
\(g_{\varepsilon_{\varepsilon_{\omega^{\omega^{\omega}}}}}(10)\)
|
| googolplexidudex
|
E100#2#3
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{100}}\quad 10's}}\)
|
f32(f22(324))
|
\(g_{\varepsilon_{\varepsilon_{\omega^{\omega^{\omega^2}}}}}(10)\)
|
| tetralogialogialogue
|
E1#4#3
|
\(10\uparrow^2 10\uparrow^2 10\uparrow^2 4\)
|
f32(f23(30))
|
\(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow4}}}(10)\)
|
| googolduplexidudex
|
E100#3#3
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10^{10^{10^{100}}}\quad 10's}}\)
|
f32(f23(324))
|
\(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow4}}}(10)\)
|
| pentalogialogialogue
|
E1#5#3
|
\(10\uparrow^2 10\uparrow^2 10\uparrow^2 5\)
|
f32(f24(30))
|
\(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow5}}}(10)\)
|
| googoltriplexidudex
|
E100#4#3
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{4\quad 10's}}}\)
|
f32(f24(324))
|
\(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow5}}}(10)\)
|
| hexalogialogialogue
|
E1#6#3
|
\(10\uparrow^2 10\uparrow^2 10\uparrow^2 6\)
|
f32(f25(30))
|
\(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow6}}}(10)\)
|
| googolquadriplexidudex
|
E100#5#3
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{5\quad 10's}}}\)
|
f32(f25(324))
|
\(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow6}}}(10)\)
|
| heptalogialogialogue
|
E1#7#3
|
\(10\uparrow^2 10\uparrow^2 10\uparrow^2 7\)
|
f32(f26(30))
|
\(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow7}}}(10)\)
|
| googolquintiplexidudex
|
E100#6#3
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{6\quad 10's}}}\)
|
f32(f26(324))
|
\(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow7}}}(10)\)
|
| octalogialogialogue
|
E1#8#3
|
\(10\uparrow^2 10\uparrow^2 10\uparrow^2 8\)
|
f32(f27(30))
|
\(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow8}}}(10)\)
|
| googolsextiplexidudex
|
E100#7#3
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{7\quad 10's}}}\)
|
f32(f27(324))
|
\(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow8}}}(10)\)
|
| ennalogialogialogue
|
E1#9#3
|
\(10\uparrow^2 10\uparrow^2 10\uparrow^2 9\)
|
f32(f28(30))
|
\(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow9}}}(10)\)
|
| googolseptiplexidudex
|
E100#8#3
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{8\quad 10's}}}\)
|
f32(f28(324))
|
\(g_{\varepsilon_{\varepsilon_{\omega\uparrow\uparrow9}}}(10)\)
|
| dekalogialogialogue, tetra-taxis
|
E1#10#3
|
\(10\uparrow^2 10\uparrow^2 10\uparrow^2 10\)
|
f33(9)
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_0}}}(10)\)
|
| googoloctiplexidudex
|
E100#9#3
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{9\quad 10's}}}\)
|
f33(9)
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_0}}}(10)\)
|
| googolnoniplexidudex
|
E100#10#3
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{10\quad 10's}}}\)
|
f33(10)
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_1}}}(10)\)
|
| googoldeciplexidudex
|
E100#11#3
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{11\quad 10's}}}\)
|
f33(11)
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_2}}}(10)\)
|
| hectalogialogialogue
|
E1#100#3
|
\(10\uparrow^2 10\uparrow^2 10\uparrow^2 100\)
|
f33(100)
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_\omega}}}(10)\)
|
| grangoldudex
|
E100#100#3 = E100#(E100#100#2) = E100#grangoldex
|
\(\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{\underbrace{10^{...^{10^{10^{100}}}}}_{100\quad 10's}}}\)
|
f33(100)
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_\omega}}}(10)\)
|
| chilialogialogialogue
|
E1#1,000#3
|
\(10\uparrow^2 10\uparrow^2 10\uparrow^2 1000\)
|
f33(1000)
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^2}}}}(10)\)
|
| grangoldudexichime
|
E1,000#1,000#3
|
\(\underbrace{10^{...^{10^{10^{1,000}}}}}_{\underbrace{10^{...^{10^{10^{1000}}}}}_{\underbrace{10^{...^{10^{10^{1000}}}}}_{1000\quad 10's}}}\)
|
f33(1000)
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^2}}}}(10)\)
|
| myrialogialogialogue
|
E1#10,000#3
|
\(10\uparrow^2 10\uparrow^2 10\uparrow^2 10000\)
|
f33(10,000)
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^3}}}}(10)\)
|
| grangoldudexitoll
|
E10,000#10,000#3
|
\(\underbrace{10^{...^{10^{10^{10^4}}}}}_{\underbrace{10^{...^{10^{10^{10^4}}}}}_{\underbrace{10^{...^{10^{10^{10^4}}}}}_{10^4+1\quad 10's}+1}+1}\)
|
f33(10,000)
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^3}}}}(10)\)
|
| grangoldudexigong
|
E100,000#100,000#3 = E100,000#grangoldexigong
|
\(\underbrace{10^{...^{10^{10^{10^5}}}}}_{\underbrace{10^{...^{10^{10^{10^5}}}}}_{\underbrace{10^{...^{10^{10^{10^5}}}}}_{10^5+1\quad 10's}+1}+1}\)
|
f33(100,000)
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^4}}}}(10)\)
|
| octadialogialogialogue
|
E1#100,000,000#3
|
\(10\uparrow^2 10\uparrow^2 10\uparrow^2 10^8\)
|
f33(108)
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^7}}}}(10)\)
|
| grangoldudexibong
|
E100,000,000#100,000,000#3
|
\(\underbrace{10^{...^{10^{10^{10^8}}}}}_{\underbrace{10^{...^{10^{10^{10^8}}}}}_{\underbrace{10^{...^{10^{10^{10^8}}}}}_{10^8+1\quad 10's}+1}+1}\)
|
f33(108)
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^7}}}}(10)\)
|
| grangoldudexithrong
|
E100,000,000,000#100,000,000,000#3
|
\(\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{\underbrace{10^{...^{10^{10^{10^{11}}}}}}_{10^{11}+1\quad 10's}+1}+1}\)
|
f33(1011)
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega+2}}}}}(10)\)
|
| sedeniadialogialogialogue
|
E1#(10^16)#3 = 10^^10^^10^^10^16
|
\(10\uparrow^2 10\uparrow^2 10\uparrow^2 10^{16}\)
|
f33(1016)
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega+6}}}}}(10)\)
|
| googoltridex
|
E100#1#4
|
\(10\uparrow^3 4\)
|
f33(f2(324))
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega^2}}}}}(10)\)
|
| ecetontridex
|
E303#1#4 = E303#ecetondudex
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{303}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{303}}}} \\ 10^{303}\quad 10's \end{matrix} \right \} \text{4 layers}\)
|
f33(f2(997))
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega^2\times3}}}}}(10)\)
|
| googolplexitridex
|
E100#2#4
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{100}}\quad 10's \end{matrix} \right \} \text{4 layers}\)
|
f33(f22(324))
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega^{\omega^2}}}}}}(10)\)
|
| googolduplexitridex
|
E100#3#4
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{10^{100}}}\quad 10's \end{matrix} \right \} \text{4 layers}\)
|
f33(f23(324))
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_{\omega^{\omega^{\omega^{\omega^2}}}}}}}(10)\)
|
| penta-taxis
|
E1#1#5 = E1#(E1#(E1#(E1#10))) = E1#tetra-taxis
|
\(10\uparrow^3 5\)
|
f34(9)
|
\(g_{\varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_0}}}}(10)\)
|
| grangoltridex
|
E100#100#4 = E100#(E100#100#3) = E100#grangoldudex
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100} } } } \\ 100\quad 10's \end{matrix} \right \} \text{5 layers}\)
|
f34(100)
|
|
| grangoltridexichime
|
E1000#1000#4
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{1000} } } } \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{1000} } } } \\ 1000\quad 10's \end{matrix} \right \} \text{5 layers}\)
|
f34(1000)
|
|
| grangoltridexitoll
|
E10,000#10,000#4
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{10000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{10000}}}} \\ 10000\quad 10's \end{matrix} \right \} \text{5 layers}\)
|
f34(10,000)
|
|
| grangoltridexigong
|
E100,000#100,000#4 = E100,000#grangoldudexigong
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100000} } } } \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100000}}}} \\ 100000\quad 10's \end{matrix} \right \} \text{5 layers}\)
|
f34(100,000)
|
|
| googolquadridex
|
E100#1#5
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100} } } } \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100} } } } \\ 10^{100}\quad 10's \end{matrix} \right \} \text{5 layers}\)
|
f34(f2(324))
|
|
| ecetonquadridex
|
E303#1#5 = E303#ecetontridex
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{303}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{303}}}} \\ 10^{303}\quad 10's \end{matrix} \right \} \text{5 layers}\)
|
f34(f2(997))
|
|
| googolplexiquadridex
|
E100#2#5
|
\(\left.\begin{matrix} \underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{100}}\quad 10's \end{matrix} \right \} \text{5 layers}\)
|
f34(f22(324))
|
|
| googolduplexiquadridex
|
E100#3#5
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{10^{100}}}\quad 10's \end{matrix} \right \} \text{5 layers}\)
|
f34(f23(324))
|
|
| hexa-taxis
|
E1#1#6 = E1#(E1#(E1#(E1#(E1#10)))) = E1#penta-taxis
|
\(10\uparrow^3 6\)
|
f35(9)
|
|
| grangolquadridex
|
E100#100#5 = E100#(E100#100#4) = E100#grangoltridex
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 100\quad 10's \end{matrix} \right \} \text{6 layers}\)
|
f35(100)
|
|
| grangolquadridexichime
|
E1000#1000#5
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{1000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{1000}}}} \\ 1000\quad 10's \end{matrix} \right \} \text{6 layers}\)
|
f35(1000)
|
|
| grangolquadridexitoll
|
E10,000#10,000#5
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{10000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{10000}}}} \\ 10000\quad 10's \end{matrix} \right \} \text{6 layers}\)
|
f35(10,000)
|
|
| grangolquadridexigong
|
E100,000#100,000#5 = E100,000#grangoltridexigong
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100000}}}} \\ 100000\quad 10's \end{matrix} \right \} \text{6 layers}\)
|
f35(100,000)
|
|
| googolquintidex
|
E100#1#6
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{100}\quad 10's \end{matrix} \right \} \text{6 layers}\)
|
f35(f2(324))
|
|
| ecetonquintidex
|
E303#1#6 = E303#ecetonquadridex
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{303}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{303}}}} \\ 10^{303}\quad 10's \end{matrix} \right \} \text{6 layers}\)
|
f35(f2(997))
|
|
| googolplexiquintidex
|
E100#2#6
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{100}}\quad 10's \end{matrix} \right \} \text{6 layers}\)
|
f35(f22(324))
|
|
| googolduplexiquintidex
|
E100#3#6
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{10^{100}}}\quad 10's \end{matrix} \right \} \text{6 layers}\)
|
f35(f23(324))
|
|
| hepta-taxis
|
E1#1#7 = E1#hexa-taxis
|
\(10\uparrow^3 7\)
|
f36(9)
|
|
| grangolquintidex
|
E100#100#6 = E100#(E100#100#5) = E100#grangolquadridex
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 100\quad 10's \end{matrix} \right \} \text{7 layers}\)
|
f36(100)
|
|
| grangolquintidexichime
|
E1000#1000#6
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{1000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{1000}}}} \\ 1000\quad 10's \end{matrix} \right \} \text{7 layers}\)
|
f36(1000)
|
|
| grangolquintidexitoll
|
E10,000#10,000#6
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{10000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{10000}}}} \\ 10000\quad 10's \end{matrix} \right \} \text{7 layers}\)
|
f36(10,000)
|
|
| grangolquintidexigong
|
E100,000#100,000#6 = E100,000#grangolquadridexigong
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100000}}}} \\ 100000\quad 10's \end{matrix} \right \} \text{7 layers}\)
|
f36(100,000)
|
|
| googolsextidex
|
E100#1#7
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{100}\quad 10's \end{matrix} \right \} \text{7 layers}\)
|
f36(f2(324))
|
|
| ecetonsextidex
|
E303#1#7
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{303}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{303}}}} \\ 10^{303}\quad 10's \end{matrix} \right \} \text{7 layers}\)
|
f36(f2(997))
|
|
| googolplexisextidex
|
E100#2#7
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{100}}\quad 10's \end{matrix} \right \} \text{7 layers}\)
|
f36(f22(324))
|
|
| googolduplexisextidex
|
E100#3#7
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{10^{100}}}\quad 10's \end{matrix} \right \} \text{7 layers}\)
|
f36(f23(324))
|
|
| octa-taxis
|
E1#1#8 = E1#hepta-taxis
|
\(10\uparrow^3 8\)
|
f37(9)
|
|
| grangolsextidex
|
E100#100#7
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 100\quad 10's \end{matrix} \right \} \text{8 layers}\)
|
f37(100)
|
|
| grangolsextidexichime
|
E1000#1000#7
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{1000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{1000}}}} \\ 1000\quad 10's \end{matrix} \right \} \text{8 layers}\)
|
f37(1000)
|
|
| grangolsextidexitoll
|
E10,000#10,000#7
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{10000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{10000}}}} \\ 10000\quad 10's \end{matrix} \right \} \text{8 layers}\)
|
f37(10,000)
|
|
| grangolsextidexigong
|
E100,000#100,000#7
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100000}}}} \\ 100000\quad 10's \end{matrix} \right \} \text{8 layers}\)
|
f37(100,000)
|
|
| googolseptidex
|
E100#1#8
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{100}\quad 10's \end{matrix} \right \} \text{8 layers}\)
|
f37(f2(324))
|
|
| ecetonseptidex
|
E303#1#8
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{303}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{303}}}} \\ 10^{303}\quad 10's \end{matrix} \right \} \text{8 layers}\)
|
f37(f2(997))
|
|
| googolplexiseptidex
|
E100#2#8
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{100}}\quad 10's \end{matrix} \right \} \text{8 layers}\)
|
f37(f22(324))
|
|
| googolduplexiseptidex
|
E100#3#8
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{10^{100}}}\quad 10's \end{matrix} \right \} \text{8 layers}\)
|
f37(f23(324))
|
|
| enna-taxis
|
E1#1#9 = E1#octa-taxis
|
\(10\uparrow^3 9\)
|
f38(9)
|
|
| grangolseptidex
|
E100#100#8
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 100\quad 10's \end{matrix} \right \} \text{9 layers}\)
|
f38(100)
|
|
| grangolseptidexichime
|
E1000#1000#8
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{1000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{1000}}}} \\ 1000\quad 10's \end{matrix} \right \} \text{9 layers}\)
|
f38(1000)
|
|
| grangolseptidexitoll
|
E10,000#10,000#8
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{10000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{10000}}}} \\ 10000\quad 10's\end{matrix}\right \} \text{9 layers}\)
|
f38(10,000)
|
|
| grangolseptidexigong
|
E100,000#100,000#8
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100000}}}} \\ 100000\quad 10's \end{matrix} \right \} \text{9 layers}\)
|
f38(100,000)
|
|
| googoloctidex
|
E100#1#9
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{100}\quad 10's \end{matrix} \right \} \text{9 layers}\)
|
f38(f2(324))
|
|
| ecetonoctidex
|
E303#1#9
|
\(\left.\begin{matrix} \underbrace{10^{...^{10^{303}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{303}}}} \\ 10^{303}\quad 10's \end{matrix} \right \} \text{9 layers}\)
|
f38(f2(997))
|
|
| googolplexioctidex
|
E100#2#9
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{100}}\quad 10's \end{matrix} \right \} \text{9 layers}\)
|
f38(f22(324))
|
|
| googolduplexioctidex
|
E100#3#9
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{10^{100}}}\quad 10's \end{matrix} \right \} \text{9 layers}\)
|
f38(f23(324))
|
|
| deka-taxis
|
E1#1#10 = E1#enna-taxis
|
\(10\uparrow^3 10\)
|
f39(9)
|
|
| grangoloctidex
|
E100#100#9
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 100\quad 10's \end{matrix} \right \} \text{10 layers}\)
|
f39(100)
|
|
| grangoloctidexichime
|
E1000#1000#9
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{1000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{1000}}}} \\ 1000\quad 10's \end{matrix} \right \} \text{10 layers}\)
|
f39(1000)
|
|
| grangoloctidexitoll
|
E10,000#10,000#9
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{10000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{10000}}}} \\ 10000\quad 10's \end{matrix} \right \} \text{10 layers}\)
|
f39(10,000)
|
|
| grangoloctidexigong
|
E100,000#100,000#9
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100000}}}} \\ 100000\quad 10's \end{matrix} \right \} \text{10 layers}\)
|
f39(100,000)
|
|
| googolnonidex
|
E100#1#10
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{100}\quad 10's \end{matrix}\right \} \text{10 layers}\)
|
f39(f2(324))
|
|
| ecetonnonidex
|
E303#1#10
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{303}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{303}}}} \\ 10^{303}\quad 10's \end{matrix} \right \} \text{10 layers}\)
|
f39(f2(997))
|
|
| googolplexinonidex
|
E100#2#10
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{100}}\quad 10's \end{matrix}\right \} \text{10 layers}\)
|
f39(f22(324))
|
|
| googolduplexinonidex
|
E100#3#10
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{10^{100}}}\quad 10's\end{matrix}\right \} \text{10 layers}\)
|
f39(f23(324))
|
|
| grangolnonidex
|
E100#100#10
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 100\quad 10's \end{matrix}\right \} \text{11 layers}\)
|
f310(100)
|
|
| grangolnonidexichime
|
E1000#1000#10
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{1000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{1000}}}} \\ 1000\quad 10's \end{matrix} \right \} \text{11 layers}\)
|
f310(1000)
|
|
| grangolnonidexitoll
|
E10,000#10,000#10
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{10000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{10000}}}} \\ 10000\quad 10's \end{matrix} \right \} \text{11 layers}\)
|
f310(10,000)
|
|
| grangolnonidexigong
|
E100,000#100,000#10
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100000}}}} \\ 100000\quad 10's \end{matrix}\right \} \text{11 layers}\)
|
f310(100,000)
|
|
| googoldecidex
|
E100#1#11
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{100}\quad 10's \end{matrix} \right \} \text{11 layers}\)
|
f310(f2(324))
|
|
| ecetondecidex
|
E303#1#11
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{303}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{303}}}} \\ 10^{303}\quad 10's \end{matrix} \right \} \text{11 layers}\)
|
f310(f2(997))
|
|
| googolplexidecidex
|
E100#2#11
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{100}}\quad 10's \end{matrix} \right \} \text{11 layers}\)
|
f310(f22(324))
|
|
| googolduplexidecidex
|
E100#3#11
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 10^{10^{10^{100}}}\quad 10's \end{matrix} \right \} \text{11 layers}\)
|
f310(f23(324))
|
|
| grangoldecidex
|
E100#100#11
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 100\quad 10's \end{matrix} \right \} \text{12 layers}\)
|
f4(11)
|
|
| grangoldecidexichime
|
E1000#1000#11
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{1000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{1000}}}} \\ 1000\quad 10's \end{matrix} \right \} \text{12 layers}\)
|
f4(11)
|
|
| grangoldecidexitoll
|
E10,000#10,000#11
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{10000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{10000}}}} \\ 10000\quad 10's \end{matrix} \right \} \text{12 layers}\)
|
f4(11)
|
|
| grangoldecidexigong
|
E100,000#100,000#11
|
\(\left.\begin{matrix}\underbrace{10^{...^{10^{100000}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100000}}}} \\ 100000\quad 10's \end{matrix} \right \} \text{12 layers}\)
|
f4(11)
|
|
| hecta-taxis
|
E1#1#100
|
\(10\uparrow^3 100\)
|
f4(100)
|
|
| chilia-taxis
|
E1#1#1000
|
\(10\uparrow^3 1000\)
|
f4(1000)
|
|
| myria-taxis
|
E1#1#10,000
|
\(10\uparrow^3 10000\)
|
f4(10,000)
|
|
| chilia-chilia-taxis
|
E1#1#1,000,000
|
\(10\uparrow^3 1000000\)
|
f4(106)
|
|
| chilia-myria-taxis
|
E1#1#10,000,000
|
\(10\uparrow^3 10000000\)
|
f4(107)
|
|
| myria-myria-taxis
|
E1#1#100,000,000
|
\(10\uparrow^3 100000000\)
|
f4(108)
|
|
| sedeniadia-taxis
|
E1#1#(10^16)
|
\(10\uparrow^3 10^{16}\)
|
f4(1016)
|
|
| googolia-taxis
|
E1#1#(10^100)
|
\(10\uparrow^3 10^{100}\)
|
f4(f2(324))
|
|
| trialogia-taxis
|
E1#1#(10^10^10)
|
\(10\uparrow^3 10^{10^{10}}\)
|
f4(f22(30))
|
|
| googolplexia-taxis
|
E1#1#(10^10^100)
|
\(10\uparrow^3 10^{10^{100}}\)
|
f4(f22(324))
|
|
| tetralogia-taxis
|
E1#1#(10^10^10^10)
|
\(10\uparrow^3 10^{10^{10^{10}}}\)
|
f4(f23(30))
|
|
| googolduplexia-taxis
|
E1#1#(10^10^10^100)
|
\(10\uparrow^3 10^{10^{10^{100}}}\)
|
f4(f23(324))
|
|
| pentalogia-taxis
|
E1#1#(10^10^10^10^10)
|
\(10\uparrow^3 10^{10^{10^{10^{10}}}}\)
|
f4(f24(30))
|
|
| googoltriplexia-taxis
|
E1#1#(10^10^10^10^100)
|
\(10\uparrow^3 10^{10^{10^{10^{100}}}}\)
|
f4(f24(324))
|
|
| hexalogia-taxis
|
E1#1#(E1#6) = 10^^^10^^6
|
\(10\uparrow^3 10\uparrow^2 6\)
|
f4(f25(30))
|
|
| heptalogia-taxis
|
E1#1#(E1#7) = 10^^^10^^7
|
\(10\uparrow^3 10\uparrow^2 7\)
|
f4(f26(30))
|
|
| octalogia-taxis
|
E1#1#(E1#8) = 10^^^10^^8
|
\(10\uparrow^3 10\uparrow^2 8\)
|
f4(f27(30))
|
|
| ennalogia-taxis
|
E1#1#(E1#9) = 10^^^10^^9
|
\(10\uparrow^3 10\uparrow^2 9\)
|
f4(f28(30))
|
|
| dekalogia-taxis
|
E1#1#(E1#10) = 10^^^10^^10 = 10^^^10^^^2
|
\(10\uparrow^3 10\uparrow^3 2\)
|
f4(f3(9))
|
|
| triataxia-taxis
|
E1#1#(E1#1#3) = E1#1#3#2 = 10^^^10^^^3
|
\(10\uparrow^3 10\uparrow^3 3\)
|
f4(f32(9))
|
|
| dekataxia-taxis
|
E1#1#10#2 = E1#1#1#3 = 10^^^10^^^10
|
\(10\uparrow^3 10\uparrow^3 10\)
|
f42(9)
|
|
| hectataxia-taxis
|
E1#1#100#2 = 10^^^10^^^100
|
\(10\uparrow^3 10\uparrow^3 100\)
|
f42(99)
|
|
| triataxiataxia-taxis
|
E1#1#3#3 = 10^^^10^^^10^^^3
|
\(10\uparrow^3 10\uparrow^3 10\uparrow^3 3\)
|
f42(f23(9))
|
|
| dekataxiataxia-taxis
|
E1#1#10#3 = E1#1#1#4 = 10^^^10^^^10^^^10
|
\(10\uparrow^3 10\uparrow^3 10\uparrow^3 10\)
|
f42(f3(10))
|
|
| hectataxiataxia-taxis
|
E1#1#100#3 = 10^^^10^^^10^^^100
|
\(10\uparrow^3 10\uparrow^3 10\uparrow^3 100\)
|
f42(f3(100))
|
|