11,348
pages

Great Bigrand Destruxul is equal to (...((200![200(200)200(200)200])![200(200)200(200)200])![200(200)200(200)200]...)![200(200)200(200)200] (with Great Grand Destruxul parentheses), using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

## Contents

### Etymology

The name of this number is based on the word "great" and the number "Bigrand Destruxul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,4,202[1[1\neg202]200[1\neg202]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,4,202[1[1/201\sim2]200[1/201\sim2]200]2\}$$
Fast-growing hierarchy $$f_{\theta(\Omega^{200},\theta(\Omega^{200}2,198)+199)+200}^2(f_{\theta(\Omega^{200},\theta(\Omega^{200}2,198)+199)+199}(200))$$
Hardy hierarchy $$H_{\theta(\Omega^{200},\theta(\Omega^{200}2,198)+199)\omega^{200}2+\theta(\Omega^{200},\theta(\Omega^{200}2,198)+199)\omega^{199}}(200)$$
Slow-growing hierarchy $$g_{\theta(\Omega_2^{200}2+\theta_1(\Omega_2^{200},\theta_1(\Omega_2^{200}2,198)+199)+200,} \\ _{\theta(\Omega_2^{200}2+\theta_1(\Omega_2^{200},\theta_1(\Omega_2^{200}2,198)+199)+200,} \\ _{\vartheta(\Omega_2^{200}2+\theta_1(\Omega_2^{200},\theta_1(\Omega_2^{200}2,198)+199)+199)))}(200)$$