11,348
pages

Great Kilodestruquaxul is equal to Great Destruquaxul![200([200([200([200(200)200(200)200])200(200)200])200(200)200])200(200)200] using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

## Contents

### Etymology

The name of this number is based on the word "great" and the number "Kilodestruquaxul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,3,201[1[1\neg200[1\neg200[1\neg200[1\neg202]200 \\ [1\neg202]200]200[1\neg202]200]200[1\neg202]200]200[1\neg202]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,3,201[1[1/200[1[1/200[1[1/200[1[1/201\sim2] \\ 200[1/201\sim2]200]2\sim2]200[1/201\sim2]200]2\sim2] \\ 200[1/201\sim2]200]2\sim2]200[1/201\sim2]200]2\}$$
Fast-growing hierarchy $$f_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)+199}^2(200)$$

where $$\alpha=\Omega^{\Omega^{200}}199+199$$

Hardy hierarchy $$H_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)\omega^{199}2}(200)$$

where $$\alpha=\Omega^{\Omega^{200}}199+199$$