20,518
pages

View full site to see MathJax equation

For BlankEntity's Golden Googol, see Golden Googol (BlankEntity).

Gugold (short for 'golden googol', formerly goolda) is equal to E100##100, using Extended Hyper-E notation.[1][2] The term was coined by Sbiis Saibian. Gugold is comparable to Bowers' boogol, Hyperon, and Woogol.

In full form (Hyper-E notation), this number is:

E100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100#100

This number is also called gugond or googonhectol.

## Approximations in other notations

Notation Approximation
Up-arrow notation $$100 \uparrow^{100} 101$$
Chained arrow notation $$100 \rightarrow 101 \rightarrow 100$$
BEAF $$\{100,101,100\}$$
Graham Array Notation $$\ [100,101,100]$$
Hyperfactorial array notation $$102!99$$
Strong array notation $$s(100,101,1,2)$$
Fast-growing hierarchy $$f_{101}(100)$$
Hardy hierarchy $$H_{\omega^{101}}(100)$$
Slow-growing hierarchy $$g_{\varphi(99,0)}(100)$$