- Not to be confused with H function.
Definition[]
H* Function
| |
Growth rate
|
\(f_{\omega}(x)\)
|
Based On
|
-illions (short scale)
|
The H* function (defined by SuperJedi224 for generating new -illions) is defined as follows:[1]
- H*(m)=H(m)=103m+3
- H*(m,0)=m
- H*(m,n+1)=HH*(m,n)(m)=H(H(H(...H(m)...))), with H*(m,n) Hs.
- H*(a,...,b,c,1)=H*(a,...,b,c)
- H*(a,...,b,c,d)=H*(a,...,b,H*(a,...,b,c,d-1)) (Although the original definition does not clarify it, the rule is probably supposed to be applied only when d > 1).
In other words:
- If there is precisely one variable, the function value is the variable-th -illon.
- if there are precisely two variables:
- if the second variable is 0,the function value is the first variable.
- else:
- Decrease the second variable in 1, and call the new function value Z.
- The function value is recursion of the first variable through the H* function Z times.
- else:
- if the last entry is 1, remove it.
- else:
- Decrease the last variable by 1, and call the new function value Z.
- Replace the last two variables with one Z.
Extended definition[]
Extended H* Function
| |
Growth rate
|
\(f_{\omega^{2} }(x)\)
|
Based on
|
-illions, H* function
|
The extended H* function (defined by SuperJedi224 for generating very large "-illions") is defined as follows:
- H*1(a)=H(a)=103a+3
- H*n(a,0)=a
- H*1(a,b)=H(H(H(...H(a)...))), with H*1(a,b-1) Hs.
- H*n(a,b)=H*n-1(a,a,...a,a) with H*n(a,b-1) "a"s.
- H*n(a,...,b,c,1)=H*n(a,...,b,c)
- H*n(a,...,b,c,d)=H*n(a,...,b,H*n(a,...,b,c,d-1))
Examples[]
- H*(0) = 103 = 1,000 = thousand
- H*(1) = 106 = 1,000,000 = million
- H*(2) = 109 = 1,000,000,000 = billion
- H*(10) = 1033 = decillion
- H*(20) = 1063 = vigintillion
- H*(100) = 10303 = centillion
- H2(0) = H*(H*(0)) = H*(103) = millillion
- H2(1) = H*(H*(1)) = H*(106) = micrillion
- H2(2) = H*(H*(2)) = H*(109) = nanillion
- H2(10) = H*(H*(10)) = H*(1033) = mecillion
- H2(20) = H*(H*(20)) = H*(1063) = meicosillion
- H2(100) = H*(H*(100)) = H*(10303) = mehectillion
- H3(0) = H*(H*(H*(0))) = H*(H*(103)) = killamillillion
- H3(1) = H*(H*(H*(1))) = H*(H*(106)) = Killamicrillion
- H3(2) = H*(H*(H*(2))) = H*(H*(109)) = Killananillion
- H3(10) = H*(H*(H*(10))) = H*(H*(1033))
- H3(20) = H*(H*(H*(20))) = H*(H*(1063))
- H3(100) = H*(H*(H*(100))) = H*(H*(10303))
- H*(10,1) = HH*(10,0)(10) = H10(10) = H*(H*(H*(H*(H*(H*(H*(H*(H*(H*(10)))))))))) = hyperillion
- H*(20,1) = HH*(20,0)(20) = H20(20) = H*(H*(...H*(20)...)) (20 H's) = icosi-hyperillion
- H*(100,1) = HH*(100,0)(100) = H100(100) = H*(H*(...H*(100)...)) (100 H's) = cent-hyperillion
- H*(10,2) = HH*(10,1)(10) = HH10(10)(10) = H*(H*(...H*(10)...)) (hyperillion H's) = grand hyperillion
- H*(20,2) = HH*(20,1)(20) = HH20(20)(20) = H*(H*(...H*(20)...)) (icosi-hyperillion H's) = grand-icosi-hyperillion
- H*(10,3) = HH*(10,2)(10) = HHH10(10)(10)(10) = H*(H*(...H*(10)...)) (grand hyperillion H's) = bigrand hyperillion
- H*(20,3) = HH*(20,2)(10) = HHH20(20)(20)(20) = H*(H*(...H*(20)...)) (grand-icosi-hyperillion H's) = bigrand-icosi-hyperillion
- H*(10,4) = HH*(10,3)(10) = HHHH10(10)(10)(10)(10) = H*(H*(...H*(10)...)) (bigrand hyperillion H's) = trigrand hyperillion
- H*(10,10) = HH*(10,9)(10) = HHHHHHHHHH10(10)(10)(10)(10)(10)(10)(10)(10)(10)(10) = hyperduillion
- H*(10,10,2) = H*(10,H*(10,10)) = grand hyperduillion
- H*(10,10,3) = H*(10,H*(10,H*(10,10))) = bigrand hyperduillion
- H*(10,10,10) = H*(10,H*(10,...H*(10,10)...)) (10 H's) = hypertrillion
- H*(10,10,10,10) = H*(10,10,H*(10,10,...H*(10,10,10)...)) (10 H's) = hyperterillion
- H*(10,10,10,10,10) = H*(10,10,10,H*(10,10,10,...H*(10,10,10,10)...)) (10 H's) = hyperpetillion
- H*2(10,1) = H*(10,10,10,10,10,10,10,10,10,10) = H*(10,10,10,10,10,10,10,10,H*(10,10,10,10,10,10,10,10,...H*(10,10,10,10,10,10,10,10,10)...)) (10 H's) = hyperhypillion
- H*2(10,2) = H*(10,10,...,10,10) (hyperhypillion amount of tens) = grand hyperhypillion
- H*2(10,3) = H*(10,10,...,10,10) (grand hyperhypillion amount of tens) = bigrand hyperhypillion
- H*2(10,10) = great hyperhypillion
- H*2(100,100) = great cent-hyperhypillion