223 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 |
210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 |
220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 |
230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 |
240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 |
250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 |
260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 |
270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 |
280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 |
290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 |
The king's gross is equal to 223.[1] The term was coined by Garrett Wilkinson.
Properties[]
- 223 is deficient.[8]
- 223 is the only nonnegative integer which cannot be written as a sum of 36 nonnegative fifth powers (see Waring's problem). It is also the largest integer which cannot be written as a sum of 32, 33, 34 or 35 nonnegative fifth powers; there are only fifteen, ten, six and three nonnegative integers with this property, respectively.
- In some countries, such as China, the Band III ends at 223 MHz.
- It is also the number of non-control 8-bit characters.
- It is the successor of 222 and the preceder of 224.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 15 ↑ 2 | ||
Scientific notation | 2.23 x 102 | 2.231 x 102 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(3)\) | \(g_{\omega^{\omega}}(4)\) | |
Copy notation | 2[3] | 3[3] | |
Chained arrow notation | 15 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {15,2} | ||
Fast-growing hierarchy | f2(5) | f2(6) | |
Hardy hierarchy | Hω(111) | Hω(112) | |
Middle-growing hierarchy | m(ω,7) | m(ω,8) | |
Hyper-E notation | E2.3483 | ||
Hyper-E notation (non-10 base) | \(E[15]2\) | ||
Hyperfactorial array notation | 5! | 6! | |
X-Sequence Hyper-Exponential Notation | 15{1}2 | ||
Steinhaus-Moser Notation | 3[3] | 4[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(-0.3) | H(-0.2) | |
Bashicu matrix system with respect to version 4 | (0)[14] | (0)[15] | |
m(n) map | m(1)(3) | m(1)(4) | |
s(n) map | \(s(1)(\lambda x . x+1)(110)\) | \(s(1)(\lambda x . x+1)(111)\) |
Sources[]
- ↑ King's Gross - N U M B 3 R - P 3 D 1 A
- ↑ OEIS A000040 - Primes
- ↑ Wolfram Alpha gross%5D Is King's gross prime?
- ↑ Wolfram Alpha gross King's gross's factors
- ↑ OEIS A005408 - Odd numbers
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005100 - Deficient numbers