Googology Wiki
Googology Wiki
Advertisement
Googology Wiki

View full site to see MathJax equation

くまくまψ関数 (English: KumaKuma ψ function) is a computable notation to generate large numbers created by a Japanese Googology Wiki user kanrokoti.[1] Its \(3\)-ary subsystem is called くまくま3変数ψ (English: 3 variables ψ),[2][3] and its full system, which is of \(4\)-ary, is called くまくま4変数ψ (English: 4 variables ψ).[4]

These are \(3\)- and \(4\)-ary extensions of the ordinal notation by p進大好きbot[5] associated to Extended Buchholz's function by Denis Maksudov.

Kanrokoti rewrote the definition of 3 variables ψ.[6] The rewritten version improved mathematical rigor and readability. In this page we use the old version.


Significance[]

Since many people misunderstood Buchholz's function and Extended Buchholz's function in this community,[7][8] there were so many notations which people stated that were computable notations much stronger than the ordinal notation associated to Extended Buchholz's function but had serious problems: Many of them were ill-defined, had no actual algorithm to compute, or were much weaker than the ordinal notation associated to Extended Buchholz's function. Unlike them, くまくまψ関数 was created in a way precisely extending the ordinal notation associated to Extended Buchholz's function.

くまくまψ関数 is designed so that it can be easily used in analysis. We list examples of the benefits of くまくまψ関数:

  1. This is an addition-based notation, which is useful in analysis because many of googological notations are addition-based.
  2. This is compatible with Extended Buchholz's function, and hence analyses by Extended Buchholz's function can be continued by using this notation.
  3. This notation is simple, because it employs only one function symbol ψ except for +, and only one constant 0.
  4. Its \(3\)-ary subsystem is expected to reach \(\psi_{\chi_0(0)}(\psi_{\chi_{2}(0)}(0))\), and the full \(4\)-ary system is expected to reach \(\psi_{\chi_0(0)}(\psi_{\chi_{3}(0)}(0))\) with respect to Rathjen's psi.
  5. This notation is extensible in various ways.[9][10][11]


Definition[]

We explain the \(3\)-ary subsytem.[3]

Notation[]

Here, we define the character string used for the notation.

we define sets T and PT of formal strings consisting of 0, ψ_, (, ), +, and commas in the following recursive way:

1. 0∈T.
2. For any X_1,X_2,X_3∈T, ψ_{X_1}(X_2,X_3)∈T and ψ_{X_1}(X_2,X_3)∈PT.
3. For any X_1,...,X_m∈PT (2≦m<∞), X_1+...+X_m∈T.

0 is abbreviated as $0, ψ_0(0,0) is abbreviated as $1, $1+...+$1 (n $1's) is abbreviated as $n for each \(n \in \mathbb{N}\) greater than 1, and ψ_0(0,$1) is abbreviated as $ω.


Ordering[]

Here, we define the magnitude relation between the notation.

For an X,Y∈T, we define the recursive 2-ary relation X<Y in the following recursive way:

1. If X=0, then X<Y is equivalent to Y≠0.
2. Suppose X=ψ_{X_1}(X_2,X_3) for some X_1,X_2,X_3∈T.
2-1. If Y=0, then X<Y is false.
2-2. Suppose Y=ψ_{Y_1}(Y_2,Y_3) for some Y_1,Y_2,Y_3∈T.
2-2-1. If X_1=Y_1 and X_2=Y_2, then X<Y is equivalent to X_3<Y_3.
2-2-2. If X_1=Y_1 and X_2≠Y_2, then X<Y is equivalent to X_2<Y_2.
2-2-3. If X_1≠Y_1, then X<Y is equivalent to X_1<Y_1.
2-3. If Y=Y_1+...+Y_{m'} for some Y_1,...,Y_{m'}∈PT (2≦m'<∞), then
   X<Y is equivalent to X=Y_1 or X<Y_1.
3. Suppose X=X_1+...+X_m for some X_1,...,X_m∈PT (2≦m<∞).
3-1. If Y=0, then X<Y is false.
3-2. If Y=ψ_{Y_1}(Y_2,Y_3) for some Y_1,Y_2,Y_3∈T, X<Y is equivalent to X_1<Y.
3-3. Suppose Y=Y_1+...+Y_{m'} for some Y_1,...,Y_{m'}∈PT (2≦m'<∞).
3-3-1. Suppose X_1=Y_1.
3-3-1-1. If m=2 and m'=2, then X<Y is equivalent to X_2<Y_2.
3-3-1-2. If m=2 and m'>2, then X<Y is equivalent to X_2<Y_2+...+Y_{m'}.
3-3-1-3. If m>2 and m'=2, then X<Y is equivalent to X_2+...+X_m<Y_2.
3-3-1-4. If m>2 and m'>2, then X<Y is equivalent to X_2+...+X_m<Y_2+...+Y_{m'}.
3-3-2. If X_1≠Y_1, then X<Y is equivalent to X_1<Y_1.


Cofinality[]

Here, we define the cofinality.

we define total recursive maps \begin{eqnarray*} \textrm{dom} \colon T & \to & T \\ X & \mapsto & \textrm{dom}(X) \\ \end{eqnarray*} in the following recursive way:

1. If X=0, then dom(X)=0.
2. Suppose X=ψ_{X_1}(X_2,X_3) for some X_1,X_2,X_3∈T.
2-1. Suppose dom(X_3)=0.
2-1-1. Suppose dom(X_2)=0.
2-1-1-1. If dom(X_1)=0 or dom(X_1)=$1, then dom(X)=X.
2-1-1-2. If dom(X_1)≠0,$1, then dom(X)=dom(X_1).
2-1-2. If dom(X_2)=$1, then dom(X)=X.
2-1-3. Suppose dom(X_2)≠0,$1.
2-1-3-1. If dom(X_2)<X, then dom(X)=dom(X_2).
2-1-3-2. Otherwise, then dom(X)=$ω.
2-2. If dom(X_3)=$1 or dom(X_3)=$ω, then dom(X)=$ω.
2-3. Suppose dom(X_3)≠0,$1,$ω.
2-3-1. If dom(X_3)<X, then dom(X)=dom(X_3).
2-3-2. Otherwise, then dom(X)=$ω.
3. If X=X_1+...+X_m for some X_1,...,X_m∈PT (2≦m<∞), then dom(X)=dom(X_m).


Fundamental Sequences[]

Here, we define the fundamental sequences using cofinality.

we define total recursive maps \begin{eqnarray*} [ \ ] \colon T \times T & \to & T \\ (X,Y) & \mapsto & X[Y] \end{eqnarray*} in the following recursive way:

1. If X=0, then X[Y]=0.
2. Suppose X=ψ_{X_1}(X_2,X_3) for some X_1,X_2,X_3∈T.
2-1. Suppose dom(X_3)=0.
2-1-1. Suppose dom(X_2)=0.
2-1-1-1. If dom(X_1)=0, then X[Y]=0.
2-1-1-2. If dom(X_1)=$1, then X[Y]=Y.
2-1-1-3. If dom(X_1)≠0,$1, then X[Y]=ψ_{X_1[Y]}(X_2,X_3).
2-1-2. If dom(X_2)=$1, then X[Y]=Y.
2-1-3. Suppose dom(X_2)≠0,$1.
2-1-3-1. If dom(X_2)<X, then X[Y]=ψ_{X_1}(X_2[Y],X_3).
2-1-3-2. Otherwise, then take a unique P,Q∈T such that dom(X_3)=ψ_{P}(Q,0).
2-1-3-2-1. Suppose Q=0.
2-1-3-2-1-1. If Y=$h (1≦h<∞) and X[Y[0]]=ψ_{X_1}(Γ,X_3) for unique Γ∈T, then
       X[Y]=ψ_{X_1}(X_2[ψ_{P[0]}(Γ,0)],X_3).
2-1-3-2-1-2. Otherwise, then X[Y]=ψ_{X_1}(X_2[ψ_{P[0]}(Q,0)],X_3).
2-1-3-2-2. Suppose Q≠0.
2-1-3-2-2-1. If Y=$h (1≦h<∞) and X[Y[0]]=ψ_{X_1}(Γ,X_3) for unique Γ∈T, then
       X[Y]=ψ_{X_1}(X_2[ψ_{P}(Q[0],Γ)],X_3).
2-1-3-2-2-2. Otherwise, then X[Y]=ψ_{X_1}(X_2[ψ_{P}(Q[0],0)],X_3).
2-2. Suppose dom(X_3)=$1.
2-2-1. If Y=$1, then X[Y]=ψ_{X_1}(X_2,X_3[0]).
2-2-2. If Y=$k (2≦k<∞), then
    X[Y]=ψ_{X_1}(X_2,X_3[0])+...+ψ_{X_1}(X_2,X_3[0]) (k's ψ_{X_1}(X_2,X_3[0])).
2-2-3. If neither of them, then X[Y]=0.
2-3. If dom(X_3)=$ω, X[Y]=ψ_{X_1}(X_2,X_3[Y]).
2-4. Suppose dom(X_3)≠0,$1,$ω.
2-4-1. If dom(X_3)<X, X[Y]=ψ_{X_1}(X_2,X_3[Y]).
2-4-2. Otherwise, then take a unique P,Q∈T such that dom(X_3)=ψ_{P}(Q,0).
2-4-2-1. Suppose Q=0.
2-4-2-1-1. If Y=$h (1≦h<∞) and X[Y[0]]=ψ_{X_1}(X_2,Γ) for unique Γ∈T, then
     X[Y]=ψ_{X_1}(X_2,X_3[ψ_{P[0]}(Γ,0)]).
2-4-2-1-2. Otherwise, then X[Y]=ψ_{X_1}(X_2,X_3[ψ_{P[0]}(Q,0)]).
2-4-2-2. Suppose Q≠0.
2-4-2-2-1. If Y=$h (1≦h<∞) and X[Y[0]]=ψ_{X_1}(X_2,Γ) for unique Γ∈T, then
     X[Y]=ψ_{X_1}(X_2,X_3[ψ_{P}(Q[0],Γ)]).
2-4-2-2-2. Otherwise, then X[Y]=ψ_{X_1}(X_2,X_3[ψ_{P}(Q[0],0)]).
3. Suppose X=X_1+...+X_m for some X_1,...,X_m∈PT (2≦m<∞).
3-1. If X_m[Y]=0 and m=2, then X[Y]=X_1.
3-2. If X_m[Y]=0 and m>2, then X[Y]=X_1+...+X_{m-1}.
3-3. If X_m[Y]≠0, then X[Y]=X_1+...+X_{m-1}+X_m[Y].


FGH[]

Here, we define the FGH.

we define total recursive maps \begin{eqnarray*} f \colon T \times \mathbb{N} & \to & \mathbb{N} \\ (X,n) & \mapsto & f_X(n) \end{eqnarray*} in the following recursive way:

1. If X=0, then \(f_X(n) = n+1\).
2. If X=$1 or X=Y+$1 for some Y∈T, then \(f_X(n) = f_{X[0]}^n(n)\).
3. If neither of them, then \(f_X(n) = f_{X[$n]}(n)\).


Large Function and Large Number[]

Here, we define large function and large number.

we define total recursive maps \begin{eqnarray*} g \colon \mathbb{N} & \to & PT \\ n & \mapsto & g(n) \end{eqnarray*} in the following recursive way:

1. If n=0, then \(g(n) = ψ_0(0,0)\).
2. Otherwise, then \(g(n) = ψ_{g(n-1)}(0,0)\).


we define total recursive maps \begin{eqnarray*} F \colon \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & F(n) \end{eqnarray*} as \(F(n) = f_{ψ_0(0,g(n))}(n)\).

Kanrokoti coined \(F^{10^{100}}(10^{100})\) as "Kumakuma 3 variables ψ number".

Similarly, Kanrokoti coined "Kumakuma 4 variables ψ number" using the \(4\)-ary full system.

Naming[]

Here, we give names for ordinals.

Kanrokoti coined the ordinal which corresponds to \(ψ_0(0,ψ_{$2}(0,0))\) "KBHO" (Kuma-Bachmann–Howard Ordinal).

Kanrokoti coined the ordinal which corresponds to \(ψ_0(0,ψ_{$ω}(0,0))\) "KBO" (Kuma-Buchholz Ordinal).

Since ψ_0(ψ_{ψ_{ψ_{ψ_...}(0)}(0)}(0)) in EBOCF is called EBO (Extended Buchholz Ordinal) among Japanese googologists, Kanrokoti coined the ordinal which corresponds to the limitation of Kumakuma 3-ary ψ "EKBO" ( Extended Kuma- Buchholz Ordinal).

Similarly, Kanrokoti coined "KKBHO" (KumaKuma-Bachmann–Howard Ordinal), "KKBO" (KumaKuma-Buchholz Ordinal), and "EKKBO" (Extended KumaKuma-Buchholz Ordinal).


Analysis[]

Although there is no formal proof, it is expected that EKBO and EKKBO coincide with \(\psi_{\chi_0(0)}(\psi_{\chi_{2}(0)}(0))\) and \(\psi_{\chi_0(0)}(\psi_{\chi_{3}(0)}(0))\) respectively.


External Links[]


See also[]

Original numbers, functions, notations, and notions

By Aeton: Okojo numbers · N-growing hierarchy
By 新井 (Arai): Arai's psi function
By aster: White-aster notation · White-aster
By バシク (BashicuHyudora): Primitive sequence number · Pair sequence number · Bashicu matrix system 1/2/3/4 original idea
By ふぃっしゅ (Fish): Fish numbers (Fish number 1 · Fish number 2 · Fish number 3 · Fish number 4 · Fish number 5 · Fish number 6 · Fish number 7 · S map · SS map · s(n) map · m(n) map · m(m,n) map) · Bashicu matrix system 1/2/3/4 formalisation · TR function (I0 function)
By Gaoji: Weak Buchholz's function
By じぇいそん (Jason): Irrational arrow notation · δOCF · δφ · ε function
By 甘露東風 (Kanrokoti): KumaKuma ψ function
By koteitan: Bashicu matrix system 2.3
By mrna: 段階配列表記 · 降下段階配列表記 · 多変数段階配列表記 · SSAN · S-σ
By Naruyoko Naruyo: Y sequence formalisation · ω-Y sequence formalisation
By Nayuta Ito: N primitive · Flan numbers (Flan number 1 · Flan number 2 · Flan number 3 · Flan number 4 version 3 · Flan number 5 version 3) · Large Number Lying on the Boundary of the Rule of Touhou Large Number 4 · Googology Wiki can have an article with any gibberish if it's assigned to a number
By Okkuu: Extended Weak Buchholz's function
By p進大好きbot: Ordinal notation associated to Extended Weak Buchholz's function · Ordinal notation associated to Extended Buchholz's function · Naruyoko is the great · Large Number Garden Number
By たろう (Taro): Taro's multivariable Ackermann function
By ゆきと (Yukito): Hyper primitive sequence system · Y sequence original idea · YY sequence · Y function · ω-Y sequence original idea


Methodology

By バシク (BashicuHyudora): Bashicu matrix system as a notation template
By じぇいそん (Jason): Shifting definition
By mrna: Side nesting
By Nayuta Ito and ゆきと (Yukito): Difference sequence system


Implementation of existing works into programs

Proofs, translation maps for analysis schema, and other mathematical contributions

By ふぃっしゅ (Fish): Computing last 100000 digits of mega · Approximation method for FGH using Arrow notation · Translation map for primitive sequence system and Cantor normal form
By Kihara: Proof of an estimation of TREE sequence · Proof of the incomparability of Busy Beaver function and FGH associated to Kleene's \(\mathcal{O}\)
By koteitan: Translation map for primitive sequence system and Cantor normal form
By Naruyoko Naruyo: Translation map for Extended Weak Buchholz's function and Extended Buchholz's function
By Nayuta Ito: Comparison of Steinhaus-Moser Notation and Ampersand Notation
By Okkuu: Verification of みずどら's computation program of White-aster notation
By p進大好きbot: Proof of the termination of Hyper primitive sequence system · Proof of the termination of Pair sequence number · Proof of the termination of segements of TR function in the base theory under the assumption of the \(\Sigma_1\)-soundness and the pointwise well-definedness of \(\textrm{TR}(T,n)\) for the case where \(T\) is the formalisation of the base theory


Entertainments

By 小林銅蟲 (Kobayashi Doom): Sushi Kokuu Hen
By koteitan: Dancing video of a Gijinka of Fukashigi · Dancing video of a Gijinka of 久界 · Storyteller's theotre video reading Large Number Garden Number aloud


See also: Template:Googology in Asia


Sources[]

  1. Koteitan, ordex/くまくま3変数, GitHub.
  2. Kanrokoti, くまくま3変数ψ, Japanese Googology Wiki user blog.
  3. 3.0 3.1 Kanrokoti, 3 variables ψ which is larger than EBOCF, Googology Wiki user blog.
  4. Kanrokoti, くまくま4変数ψ, Japanese Googology Wiki user blog.
  5. p進大好きbot, Ordinal Notation Associated to Extended Buchholz's OCF,, Googology Wiki user blog.
  6. Kanrokoti, Rewriting the definition of Kumakuma 3-var ψ, Googology Wiki user blog.
  7. Buchholz's function#Common misconceptions
  8. p進大好きbot, List of common mistakes in googology, Googology Wiki user blog.
  9. p進大好きbot, Transfinite Extended Buchholz's function, Googology Wiki user blog.
  10. Mitsuki, 試作:くまくま(大嘘)多変数Ψ, Japanese Googology Wiki user blog.
  11. p進大好きbot, ヴェブレン関数→ブーフホルツのψ関数→?, Japanese Googology Wiki user blog.
Advertisement