The large Veblen ordinal is a large countable ordinal. In the Veblen hierarchy as extended to transfinitely many arguments (also called Schutte's Klammersymbolen), it is the least fixed point of the ordinal function \(\alpha \mapsto \varphi \left( \begin{array}{c} 1 \\ \alpha \end{array} \right)\). Using Weiermann's \(\vartheta\) function, it can also be denoted \(\vartheta(\Omega^\Omega)\) and is the first fixed point of \(\alpha \mapsto \vartheta(\Omega^\alpha)\). Additionally, using Madore's \(\psi\) function or Buchholz's \(\psi\) function, it is equal to \(\psi_0(\Omega^{\Omega^\Omega})\). This ordinal has also been called the "Great Veblen number" and denoted as \(E(0)\)[1].
Jonathan Bowers has mentioned "LVO-order set theory" while discussing hypothetical ways to beat Rayo's number without defining it.[2]
In the fast-growing hierarchy, using Bird's array notation \(f_{\vartheta(\Omega^{\Omega})}(n)\) is approximately {n,n [1 [1 ¬ 1 ¬ 2] 2] 2} in the Nested Hyper-Nested Array Notation,[3] and {n,n [1 [1 / 1 / 2 ~ 2] 2] 2} in the Hierarchial Hyper-Nested Array Notation.[4]
Sources[]
- ↑ M. Rathjen, The art of ordinals analysis (p.55, 2006, accessed 2020-11-11)
- ↑ Bowers, Jonathan. Going to Oblivion. Retrieved 2016-12-14.
- ↑ Bird, Chris. Beyond Bird’s Nested Arrays II.
- ↑ Bird, Chris. Beyond Bird’s Nested Arrays IV.
See also[]
Basics: cardinal numbers · ordinal numbers · limit ordinals · fundamental sequence · normal form · transfinite induction · ordinal notation · Absolute infinity
Theories: Robinson arithmetic · Presburger arithmetic · Peano arithmetic · KP · second-order arithmetic · ZFC
Model Theoretic Concepts: structure · elementary embedding
Countable ordinals: \(\omega\) · \(\varepsilon_0\) · \(\zeta_0\) · \(\eta_0\) · \(\Gamma_0\) (Feferman–Schütte ordinal) · \(\varphi(1,0,0,0)\) (Ackermann ordinal) · \(\psi_0(\Omega^{\Omega^\omega})\) (small Veblen ordinal) · \(\psi_0(\Omega^{\Omega^\Omega})\) (large Veblen ordinal) · \(\psi_0(\varepsilon_{\Omega + 1}) = \psi_0(\Omega_2)\) (Bachmann-Howard ordinal) · \(\psi_0(\Omega_\omega)\) with respect to Buchholz's ψ · \(\psi_0(\varepsilon_{\Omega_\omega + 1})\) (Takeuti-Feferman-Buchholz ordinal) · \(\psi_0(\Omega_{\Omega_{\cdot_{\cdot_{\cdot}}}})\) (countable limit of Extended Buchholz's function) · \(\omega_1^\mathfrak{Ch}\) (Omega one of chess) · \(\omega_1^{\text{CK}}\) (Church-Kleene ordinal) · \(\omega_\alpha^\text{CK}\) (admissible ordinal) · recursively inaccessible ordinal · recursively Mahlo ordinal · reflecting ordinal · stable ordinal · \(\lambda,\gamma,\zeta,\Sigma\) (Infinite time Turing machine ordinals) · gap ordinal · List of countable ordinals
Ordinal hierarchies: Fast-growing hierarchy · Hardy hierarchy · Slow-growing hierarchy · Middle-growing hierarchy · N-growing hierarchy
Ordinal functions: enumeration · normal function · derivative · Veblen function · ordinal collapsing function · Weak Buchholz's function · Bachmann's function · Madore's function · Feferman's theta function · Buchholz's function · Extended Weak Buchholz's function · Extended Buchholz's function · Jäger-Buchholz function · Jäger's function · Rathjen's psi function · Rathjen's Psi function · Stegert's Psi function · Arai's psi function
Uncountable cardinals: \(\omega_1\) · omega fixed point · inaccessible cardinal \(I\) · Mahlo cardinal \(M\) · weakly compact cardinal \(K\) · indescribable cardinal · rank-into-rank cardinal
Classes: \(\textrm{Card}\) · \(\textrm{On}\) · \(V\) · \(L\) · \(\textrm{Lim}\) · \(\textrm{AP}\) · Class (set theory)