Googology Wiki
Googology Wiki
Advertisement
Googology Wiki

View full site to see MathJax equation

A limit ordinal is a non-zero ordinal that has no immediate predecessor.[1] Formally, an ordinal \(\alpha>0\) is a limit ordinal if and only if there does not exist a \(\beta\) so that \(\beta+1=\alpha\). The least limit ordinal is \(\omega\), some of the next limit ordinals are \(\omega\times2\) and \(\omega\times3\), and limit ordinals can informally be thought of as "multiples of \(\omega\)" due to how all limit ordinals are of the form \(\omega\times \beta\). Some authors allow \(0\) to be a limit ordinal,[2] and hence a limit ordinal is sometimes called a non-zero limit ordinal. The class of limit ordinals is often denoted by \(\textrm{Lim}\).

An important fact about limit ordinals is that not all limit ordinals are of the form \(\beta+\omega\) where \(\beta\) is another limit ordinal. For example, \(\omega^2\) is a limit ordinal that can't be written as \(\beta+\omega\) where \(\beta\) is a limit ordinal \(<\omega^2\).

Sources[]

  1. MathWorld, Limit Ordinal
  2. Thomas Jech, Set Theory. Elsevier Science, 1978. p.15

See also[]

Basics: cardinal numbers · ordinal numbers · limit ordinals · fundamental sequence · normal form · transfinite induction · ordinal notation · Absolute infinity
Theories: Robinson arithmetic · Presburger arithmetic · Peano arithmetic · KP · second-order arithmetic · ZFC
Model Theoretic Concepts: structure · elementary embedding
Countable ordinals: \(\omega\) · \(\varepsilon_0\) · \(\zeta_0\) · \(\eta_0\) · \(\Gamma_0\) (Feferman–Schütte ordinal) · \(\varphi(1,0,0,0)\) (Ackermann ordinal) · \(\psi_0(\Omega^{\Omega^\omega})\) (small Veblen ordinal) · \(\psi_0(\Omega^{\Omega^\Omega})\) (large Veblen ordinal) · \(\psi_0(\varepsilon_{\Omega + 1}) = \psi_0(\Omega_2)\) (Bachmann-Howard ordinal) · \(\psi_0(\Omega_\omega)\) with respect to Buchholz's ψ · \(\psi_0(\varepsilon_{\Omega_\omega + 1})\) (Takeuti-Feferman-Buchholz ordinal) · \(\psi_0(\Omega_{\Omega_{\cdot_{\cdot_{\cdot}}}})\) (countable limit of Extended Buchholz's function)‎ · \(\omega_1^\mathfrak{Ch}\) (Omega one of chess) · \(\omega_1^{\text{CK}}\) (Church-Kleene ordinal) · \(\omega_\alpha^\text{CK}\) (admissible ordinal) · recursively inaccessible ordinal · recursively Mahlo ordinal · reflecting ordinal · stable ordinal · \(\lambda,\gamma,\zeta,\Sigma\) (Infinite time Turing machine ordinals) · gap ordinal · List of countable ordinals
Ordinal hierarchies: Fast-growing hierarchy · Hardy hierarchy · Slow-growing hierarchy · Middle-growing hierarchy · N-growing hierarchy
Ordinal functions: enumeration · normal function · derivative · Veblen function · ordinal collapsing function · Weak Buchholz's function · Bachmann's function · Madore's function · Feferman's theta function · Buchholz's function · Extended Weak Buchholz's function · Extended Buchholz's function · Jäger-Buchholz function · Jäger's function · Rathjen's psi function · Rathjen's Psi function · Stegert's Psi function · Arai's psi function
Uncountable cardinals: \(\omega_1\) · omega fixed point · inaccessible cardinal \(I\) · Mahlo cardinal \(M\) · weakly compact cardinal \(K\) · indescribable cardinal · rank-into-rank cardinal · Berkeley cardinal · (Club Berkeley cardinal · limit club Berkeley cardinal)
Classes: \(\textrm{Card}\) · \(\textrm{On}\) · \(V\) · \(L\) · \(\textrm{Lim}\) · \(\textrm{AP}\) · Class (set theory)

Advertisement