20,523
pages

View full site to see MathJax equation

This is a list of googolisms in ascending order.

## Class 0 (0 - 6)

Name Value Approximation (Fast-growing hierarchy)
Zero 0 N/A
Googolminex $$10^{-(10^{100})}$$ or 1/googolplex N/A
Googol-minutia $$10^{-100}$$ or 1/googol N/A
One 1 f0(0)
Two 2 f0(1)
Three 3 f0(2)
Four 4 f0(3)
Five 5 f0(4)
Six 6 f0(5)

## Class 1 (7 - 1,000,000)

Name Value Approximation (Fast-growing hierarchy)
Seven 7 f0(6)
Eight 8 f0(7)
Nine 9 f0(8)
Ten 10 f1(5)
Dozen 12 f1(6)
Hundred 100 (102) f1(50)
Eleventy 110 f1(55)
Twelfty (or long hundred) 120 f1(60)
Gross 144 (122) f1(72)
Baker's gross 169 (132) f2(5)
Poulter's gross 196 (142) f1(98)
Short ream 480 f2(6)
Ream 500 f2(6)
Beast number 666 f2(7)
Thousand / Niloogol 1,000 (103) f2(7)
Great gross 1,728 (123) f2(8)
Great Baker's gross 2,197 (133) f2(8)
Poulter's great gross 2,744 (143) f2(8)
Lakh 100,000 f2(13)

## Class 2 (1,000,000 - $$10^{1,000,000}$$)

Name Value Approximation (Fast-growing hierarchy)
Million 1,000,000 f2(16)
Crore 10,000,000 f2(19)
Myllion 100,000,000 f2(22)
Billion(S)[1] / Milliard 1,000,000,000 f2(25)
Dialogue 1010 f2(29)
Trillion(S) / Billion(L) 1012 f2(35)
Byllion 1016 f2(48)
Quintillion(S) / Trillion(L) 1018 f2(54)
Guppy 1020 f2(61)
Sextillion(S) / Trilliard 1021 f2(64)
Nonillion(S) / Quintillion(L) 1030 f2(93)
Belphegor's prime ~1.00000000000007*1030 f2(93)
Tryllion 1032 f2(100)
Decillion(S) / Quintilliard 1033 f2(103)
Undecillion(S) / Sextillion(L) 1036 f2(113)
Duodecillion(S) / Sextilliard 1039 f2(123)
Tredecillion(S) / Septillion(L) 1042 f2(133)
Quattuordecillion(S) / Septilliard 1045 f2(143)
Quindecillion(S) / Octillion(L) 1048 f2(151)
Lcillion / Gogol 1050 f2(159)
Sexdecillion(S) / Octilliard 1051 f2(162)
Septendecillion(S) / Nonillion(L) 1054 f2(171)
Octodecillion(S) / Nonilliard 1057 f2(182)
Novemdecillion(S) / Decillion(L) 1060 f2(192)
Vigintillion(S) / Decilliard 1063 f2(202)
Muryoutaisuu 1068 f2(219)
Eddington number 136*2256 ~ 1.5747724136275*1079 f2(256)
Ogol 1080 f2(258)
Trigintillion(S) 1093 f2(301)
Googol 10100 f2(323)
Shannon number 10120 f2(390)
Googolex 12060 ~ 5.6347514353165*10124 f2(405)
Quinquagintillion(S) 10153 f2(499)
Trigintillion(L) 10180 f2(589)
Sexagintillion(S) 10183 f2(599)
Number of Planck volumes in the observable universe ~4.6*10185 f2(607)
Gargoogol 10200 f2(656)
Septuagintillion(S) 10213 f2(698)
Hundertime 4.71193079990*10219 f2(721)
Googoc 200100 ~ 1.2676506002282*10230 f2(754)
Octogintillion(S) 10243 f2(797)
Nonagintillion(S) 10273 f2(897)
Quinquagintillion(L) 10300 f2(996)
Centillion(S) 10303 f2(997)
Sexagintillion(L) 10360 f2(1,185)
Primo-vigesimo-centillion(S) 10366 f2(1,205)
Faxul 200! ~ 7.88657867364*10374 f2(1,235)
Septuagintillion(L) 10420 f2(1,384)
Octogintillion(L) 10480 f2(1,584)
Googocci 402201 ~ 2.814729533583*10523 f2(1,728)
Nonagintillion(L) 10540 f2(1,783)
Centillion(L) 10600 f2(1,982)
Ducentillion(S) 10603 f2(1,992)
Primo-vigesimo-centillion(L) 10726 f2(2,400)
Trecentillion(S) 10903 f2(2,988)
Googolchime 101,000 f2(3,310)
Quingentillion(S) 101,503 f2(4,981)
Sescentillion(S) 101,803 f2(5,977)
Septingentillion(S) 102,103 f2(6,973)
Octingentillion(S) 102,403 f2(7,970)
Nongentillion(S) 102,703 f2(8,966)
Millillion(S) 103,003 f2(9,962)
Decyllion 104,096 f2(13,592)
Millillion(L) 106,000 f2(19,917)
Googoltoll 1010,000 f2(33,204)
Myrillion/Decimillillion(S) 1030,003 f2(99,650)
Hitchhiker's number 2267,709 ~ 2.748585232104986*1080,588 f2(f2(14))
Googolgong 10100,000 f2(f2(15))
Centimillillion(S) 10300,003 f2(f2(16))

## Class 3 ($$10^{1,000,000} - 10^{10^{1,000,000}}$$)

Name Value Approximation (fast-growing hierarchy)
Milliplexion 101,000,000 f2(f2(17))
Milli-millillion(S) 103,000,003 f2(f2(19))
Vigintyllion 104,194,304 f2(f2(19))
Milli-millillion(L) 106,000,000 f2(f2(20))
Largest known prime 282,589,933-1 ~ 1.488944*1024,862,047 f2(f2(22))
Nanillion 103,000,000,003 f2(f2(28))
Trialogue 101010 f2(f2(30))
Ballium's number ~ 2.03542*10138,732,019,349 f2(f2(33))
Picillion 103*1012+3 f2(f2(37))
Nirabhilapya nirabhilapya parivarta $$10^{7 \times 2^{122}}$$ f2(f2(37))
Femtillion 103*1015+3 f2(f2(48))
Attillion 103*1018+3 f2(f2(57))
Guppyplex 101020 f2(f2(63))
Zeptillion 103*1021+3 f2(f2(67))
Yoctillion 103*1024+3 f2(f2(76))
Xonillion 103*1027+3 f2(f2(86))
Vecillion 103*1030+3 f2(f2(96))
Mecillion 103*1033+3 f2(f2(106))
Duecillion 103*1036+3 f2(f2(116))
Trecillion 103*1039+3 f2(f2(125))
Tetrecillion 103*1042+3 f2(f2(135))
Icosillion 103*1060+3 f2(f2(195))
Doppelgängion 101068 f2(f2(220))
Triacontillion 103*1090+3 f2(f2(294))
Googolplex 1010100 f2(f2(325))
Gargoogolplex googolplex2 = 102*10100 f2(f2(326))
Googolbang (10100)! ~ 109.957*10101 f2(f2(332))
Tetracontillion 103*10120+3 f2(f2(393))
Pentacontillion 103*10150+3 f2(f2(492))
Hexacontillion 103*10180+3 f2(f2(592))
Heptacontillion 103*10210+3 f2(f2(691))
Octacontillion 103*10240+3 f2(f2(791))
Ennacontillion 103*10270+3 f2(f2(890))
Hectillion 103*10300+3 f2(f2(989))
Ecetonplex 1010303 f2(f2(998))
Kilofaxul (200!)! ~ 1010379 f2(f2(1245))
Dohectillion 103*10600+3 f2(f2(1985))
Leviathan number 10666! ~ 1010668 f2(f2(2212))
Triahectillion 103*10900+3 f2(f2(2981))
Googolplexichime 10101,000 f2(f2(3311))
Tetrahectillion 103*101,200+3 f2(f2(3977))
Killillion 103*103,000+3 f2(f2(9955))
Vecekillillion 103*1030,000+3 f2(f2(f2(13)))
Googolplexigong 1010100,000 f2(f2(f2(14)))
Hectekillillion 103*10300,000+3 f2(f2(f2(16)))

## Class 4 ($$10^{10^{1,000,000}}$$ - $$10^{10^{10^{10^{1,000,000}}}}$$)

Name Value Approximation (fast-growing hierarchy)
Millionduplex 10101,000,000 f23(17)
Megillion 103*103,000,000+3 f23(21)
Gigillion 103*103,000,000,000+3 f23(32)
Tetralogue 10101010 f23(35)
Terillion 103*103*1012+3 f23(37)
Petillion 103*103*1015+3 f23(47)
Exillion 103*103*1018+3 f23(57)
Zettillion 103*103*1021+3 f23(67)
Yottillion 103*103*1024+3 f23(76)
Xennillion 103*103*1027+3 f23(86)
Dakillion 103*103*1030+3 f23(96)
Hendillion 103*103*1033+3 f23(106)
First Skewes' number eee79 ~ 10101034 f23(108)
Dokillion 103*103*1036+3 f23(116)
Tedakillion 103*103*1042+3 f23(134)
Ikillion 103*103*1060+3 f23(195)
Trakillion 103*103*1090+3 f23(294)
Googolduplex 101010100 f23(324)
Fzgoogolplex (1010100)1010100 = 101010100+100 f23(326)
Tekillion 103*103*10120+3 f23(393)
Hotillion 103*103*10300+3 f23(990)
Ecetonduplex 101010303 f23(998)
Megafaxul ((200!)!)! ~ 101010379 f23(1235)
Botillion 103*103*10600+3 f23(1986)
Trotillion 103*103*10900+3 f23(2982)
Second Skewes number eeee7.705 ~ 101010963 f23(3189)
Totillion 103*103*101,200+3 f23(3978)
Kalillion 103*103*103,000+3 f23(9956)
Dalillion 103*103*106,000+3 f23(19921)
Tralillion 103*103*109,000+3 f23(29886)
Talillion 103*103*1012,000+3 f23(39851)
Dakalillion 103*103*1030,000+3 f23(99645)
Googolduplexigong 101010100,000 f24(14)
Hotalillion 103*103*10300,000+3 f24(16)

## Class 5 ($$10^{10^{10^{10^6}}}$$ - $$10^{10^{10^{10^{10^6}}}}$$)

Name Value Approximation (fast-growing hierarchy)
Millitriplexion 1010101,000,000 f24(16)
Mejillion 103*103*103,000,000+3 f24(19)
Gijillion 103*103*10300,000,0000+3 f24(28)
Pentalogue 1010101010 f24(30)
Astillion 103*103*103*1012+3 f24(38)
Lunillion 103*103*103*1015+3 f24(47)
Fermillion 103*103*103*1018+3 f24(57)
Glocillion 103*103*103*1030+3 f24(96)
Multillion 103*103*103*1042+3 f24(136)
Metillion 103*103*103*1045+3 f24(146)
Googoltriplex 10101010100 f24(326)
Fzgargoogolplex googolduplexgoogolduplex f24(326)
Ecetontriplex 10101010303 f24(998)
Gigafaxul (((200!)!)!)! ~ 10101010379 f24(1242)
Googoltriplexigong 10101010100,000 f25(14)

## Tetration level ($$10^{10^{10^{10^{10^6}}}}$$ - $$10 \uparrow\uparrow\uparrow 3$$)

Name Value
Hexalogue 10↑↑6
Fzgargantugoogolplex googoltriplexgoogoltriplex
Heptalogue 10↑↑7
Googolquinplex E100#6
Octalogue 10↑↑8
Googolsextiplex E100#7
Ennalogue 10↑↑9
Bentley's Number $$\sum^{9}_{i = 0} 10 \uparrow\uparrow i$$
Googolseptiplex E100#8
Decker {10,10,2} = 10↑↑10
Googoloctiplex E100#9
Endekalogue / Equinoxal 10↑↑11 = 10(≡) = 10(10)(10)
Googolnoniplex E100#10
Dodekalogue 10↑↑12
Googoldeciplex E100#11
Giggol {10,100,2} = 10↑↑100
Grangol E100#100
Expofaxul 200!1
Mega 2[5] = 256[4] ~ 10↑↑258
Chilialogue 10↑↑1,000
Myrialogue 10↑↑10,000
Grangolgong E100,000#100,000
Tritri {3,3,3} = {3,7625597484987,2} = 3↑↑7,625,597,484,987
Googol-stack 10↑↑(10100)
Googoldex E100#(10100) = E100#1#2
Jaghanya Parīta Asaṃkhyāta ~ 10↑↑10136
Ecetondex E303#1#2
Grand Faxul ~ 10↑↑10379
Zootzootplex Exponential factorial of googolplex = googolplexgoogolplex-1googolplex-2...432.
Googolplexstack 10↑↑(1010100)
Googolplexidex E100#(1010100) = E100#2#2
Grand Kilofaxul ~ 10↑↑1010379

## Up-arrow notation level ($$10 \uparrow\uparrow\uparrow 3$$ - $$f_\omega(f_3(10))$$)

Name Value
Tria-taxis E1#1#3 = 10↑↑↑3 = 10↑↑10↑↑10
Equiduoxal 10(≡≡) = 10(10(≡))(10(≡))
Giggolplex {10,giggol,2} = 10↑↑10↑↑100
Grangoldex E100#100#2
Kiloexpofaxul (200!1)!1
Grangoldexigong E100,000#100,000#2
Googolgoogolduplex 10↑↑10↑↑(10100)
Ecetondudex E303#1#3
Bigrand Faxul ~ 10↑↑10↑↑(10379)
Tetra-taxis E1#1#4 = 10↑↑↑4
Giggolduplex {10,giggolplex,2} = 10↑↑10↑↑10↑↑100
Grangoldudex E100#100#3
Megaexpofaxul ((200!1)!1)!1
Grangoldudexigong E100,000#100,000#3
Googolgoogoltriplex 10↑↑10↑↑10↑↑(10100)
Grangoltridex E100#100#4
(fancy K) 10↑↑↑10
Megiston 10[5] ~ 10↑↑↑11
Gaggol {10,100,3} = 10↑↑↑100
Greagol E100#100#100
Tetrofaxul 200!2
Greagolgong E100,000#100,000#100,000
Googol-3-flex 10↑↑↑(10100)
Ecetonthrex E303#1#1#2
Folkman's number 2↑↑↑(2901)
Grand expofaxul ~ 10↑↑↑10↑↑198
A-ooga 2[6]
Grahal g1 = 3↑↑↑↑3
Super K 10↑↑↑↑3
Gaggolplex {10,gaggol,3}
Greagolthrex E100#100#100#2
Kilotetrofaxul (200!2)!2
Greagolthrexigong E100,000#100,000#100,000#2
Ecetonduthrex E303#1#1#3
Tritet {4,4,4} = 4↑↑↑↑4
Greagolduthrex E100#100#100#3
Greagolduthrexigong E100,000#100,000#100,000#3
Equitrioxal 10(≡≡≡) = 10(10(≡≡))(10(≡≡))
Hexar $$Q_{1,0}(6)$$ = 6↑↑↑↑6
Deka-petaxis {10,10,4} = 10↑↑↑↑10
Geegol {10,100,4} = 10↑↑↑↑100
Gigangol E100#100#100#100
Pentofaxul 200!3
Geegolplex {10,geegol,4}
Gigangoltetrex E100#100#100#100#2
Gigangoldutetrex E100#100#100#100#3
Tripent {5,5,5} = 5↑↑↑↑↑5
Deka-exaxis 10↑↑↑↑↑10
Gigol {10,100,5} = 10↑↑↑↑↑100
Gorgegol E100#100#100#100#100
Hexofaxul 200!4
Gigolplex {10,gigol,5}
Gorgegolpentex E100#100#100#100#100#2
Goggol {10,100,6}= 10↑↑↑↑↑↑100
Gulgol E100#100#100#100#100#100
Goggolplex {10,goggol,6}
Gulgolhex E100#100#100#100#100#100#2
Trisept {7,7,7} = 7↑77
Gagol {10,100,7} = 10↑7100
Gaspgol E100#100#100#100#100#100#100
Gagolplex {10,gagol,7}
Gaspgolheptex E100#100#100#100#100#100#100#2
Ginorgol E100#100#100#100#100#100#100#100
Ginorgoloctex E100#100#100#100#100#100#100#100#2
Gargantuul E100##9
Tridecal {10,10,10}
Googondol E100##10
Boogol {10,10,100}
Gugold E100##100
Hyperfaxul 200![1]
Gugoldagong E100,000##100,000
Gongol hyper(10,10100,100)
Googoldiflux 10↑10^10010^100
Equiquinoxal 10(≡{≡}≡)
$$q(6)$$ (lower bound)

## Linear omega level ($$f_\omega(f_3(10))$$ - $$f_{\omega^2}(f_3(10))$$)

Name Value
Moser 2[2[5]] using Steinhaus-Moser notation, ~ 3 ↑Mega 3
Boogolplex {10,10,{10,10,100}}
Gugolda-suplex E100##100#2
Kilohyperfaxul (200![1])![1]
Gongolplex hyper(10,gongol,100)
Dihexar $$Q_{1,1}(6) \approx 6\rightarrow 6\rightarrow 6\rightarrow 2$$
Little Graham
Graham's number g64, where g1 = 3 ↑4 3 and gn = 3 ↑gn-1 3, ~ {3,65,1,2}
xkcd number A(G,G), where G is Graham's number, ~ {3,66,1,2}
Corporal {10,100,1,2}
Graatagold E100##100#100
Forcal g1,000,000
Conway's Tetratri 3→3→3→3 ~ {33,3,2,2}
Corporalplex {10,{10,100,1,2},1,2}
Graatagolda-sudex E100##100#100#2
Force forcal gforcal
Trihexar $$Q_{1,2}(6)$$
Greegold E100##100#100#100
Suporcal Forcal(1,000,000)
Greegolda-suthrex E100##100#100#100#2
Grinningold E100##100#100#100#100
Megocal Forcal2(1,000,000)
Golaagold E100##100##5
Gruelohgold E100##100##6
Gaspgold E100##100##7
Ginorgold E100##100##8
Grand tridecal {10,10,10,2}
Gugolthra E100##100##100
Biggol {10,10,100,2}
Giaxul 200![200] = 200![1,2]
Ultron $$\approx f_{\omega+200} (100)$$
Terribocal Forcal1,2(1)
Biggolplex {10,10,{10,10,100,2},2}
Graatagolthra E100##100##100#100
Greegolthra E100##100##100#100#100
Tetratri {3,3,3,3}
Septasexahexar $$Q_{3,0}(6)$$
Gugoltesla E100##100##100##100
Baggol {10,10,100,3}
Tribocal Forcal1,3(1)
Baggolplex {10,10,{10,10,100,3},3}
Graatagoltesla E100##100##100##100#100
Supertet {4,4,4,4}
Gugolpeta E100##100##100##100##100
Beegol {10,10,100,4}
Beegolplex {10,10,{10,10,100,4},4}
Gugolhexa E100###6
Bigol {10,10,100,5}
Gugolhepta E100###7
Boggol {10,10,100,6}
Gugolocta E100###8
Bagol {10,10,100,7}
General {10,10,10,10}
Kaboodol $$\underbrace{10 \rightarrow\ldots\rightarrow 10}_{102} < \text{kaboodol} < \underbrace{10 \rightarrow\ldots\rightarrow 10}_{103}$$
Throogol E100###100
Troogol {10,10,10,100}
Giabixul 200![200,200]

## Quadratic omega level ($$f_{\omega^2}(f_3(10))$$ - $$f_{\omega^3}(f_3(10))$$)

Name Value
Generalplex {10,10,10,{10,10,10,10}} = {10,3,1,1,2}
Kaboodolplex $$\underbrace{10 \rightarrow\ldots\rightarrow 10}_{\text{kaboodol}+2} < \text{kaboodolplex} < \underbrace{10 \rightarrow\ldots\rightarrow 10}_{\text{kaboodol}+3}$$
Troogolplex {10,10,10,{10,10,10,100}}
Thrangol E100###100#100
BOX_M̃
Threagol E100###100#100#100
Thrugold E100###100##100
Thrugolthra E100###100##100##100
Thrugoltesla E100###100##100##100##100
Throotrigol E100###100###100
Triggol {10,10,10,100,2}
Triggolplex {10,10,10,{10,10,10,100,2},2}
Thrantrigol E100###100###100#100
Thrutrigold E100###100###100##100
Pentatri {3,3,3,3,3}
Throotergol E100###100###100###100
Traggol {10,10,10,100,3}
Throopetol E100###100###100###100###100
Treegol {10,10,10,100,4}
Superpent {5,5,5,5,5}
Throohexol E100####6
Trigol {10,10,10,100,5}
Throoheptgol E100####7
Troggol {10,10,10,100,6}
Throogogdol E100####8
Tragol {10,10,10,100,7}
Tetroogol E100####100

## Polynomial omega level ($$f_{\omega^3}(f_3(10))$$ - $$f_{\omega^\omega}(f_3(10))$$)

Name Value
Tetrangol E100####100#100
Tetrugold E100####100##100
Tetrithroogol E100####100###100
Tetrootrigol E100####100####100
Hexatri {3,3,3,3,3,3}
Tetrootergol E100####100####100####100
Tetroopetol E100####100####100####100####100
Tetroohexol E100#####6
Superhex {6,6,6,6,6,6}
Tetrooheptgol E100#####7
Tetroogogdol E100#####8
Pentoogol E100#####100
Quintoogol {10,10,10,10,10,100}
Pentootrigol E100#####100#####100
Quintiggol {10,10,10,10,10,100,2}
Pentootergol E100#####100#####100#####100
Quintaggol {10,10,10,10,10,100,3}
Quinteegol {10,10,10,10,10,100,4}
Quintigol {10,10,10,10,10,100,5}
Supersept {7,7,7,7,7,7,7}
Hexoogol E100######100
Sextoogol {10,10,10,10,10,10,100}
Superoct {8,8,8,8,8,8,8,8}
Heptoogol E100#######100
Septoogol {10,10,10,10,10,10,10,100}
Superenn {9,9,9,9,9,9,9,9,9}
Ogdoogol E100########100
Octoogol {10,10,10,10,10,10,10,10,100}
Iteral {10,10,10,10,10,10,10,10,10,10} = {10,10 (1) 2} = {10,2,2 (1) 2}
Entoogol E100#########100
Dektoogol E100##########100
Ultatri {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} = {3,27 (1) 2}
Goobol {10,100(1)2}
Godgahlah E100#100100 = E100#^#100
Giatrixul 200![200,200,200]
Godgahlahgong E100,000#100,000100,000

## Exponentiated linear omega level ($$f_{\omega^\omega}(f_3(10))$$ - $$f_{\omega^{\omega^2}}(f_3(10))$$)

Name Value
Dupertri {3,{3,3,3}(1)2} = {3,3,2 (1) 2}
Duperdecal {10,{10,10(1)2}(1)2}
Goobolplex {10,{10,100(1)2}(1)2}
Grand godgahlah E100#godgahlah100 = E100#^#100#2
Grand godgahlahgong E100,000#godgahlahgong100,000
Grand grand godgahlah E100#^#100#3
Gibbol {10,100,2(1)2}
Grandgahlah E100#^#100#100
Latri {3,3,3(1)2}
Gabbol {10,100,3(1)2}
Greagahlah E100#^#100#100#100
Boobol {10,10,100(1)2}
Gugoldgahlah E100#^#100##100
Bibbol {10,10,100,2(1)2}
Gugolthragahlah E100#^#100##100##100
Troobol {10,10,10,100(1)2}
Throogahlah E100#^#100###100
Tetroogahlah E100#^#100####100
Gootrol {10,100(1)3}
Gotrigahlah E100#^#100#^#100
Bootrol {10,10,100(1)3}
Gotergahlah E100#^#100#^#100#^#100
Emperal {10,10(1)10}
Gossol {10,10(1)100}
Godgoldgahlah E100#^#*#100
Emperalplex {10,10(1){10,10(1)10}}
Gossolplex {10,10(1){10,10(1)100}}
Gotrigoldgahlah E100#^#*#100#^#*#100
Gissol {10,10(1)100,2}
Gassol {10,10(1)100,3}
Hyperal {10,10(1)10,10}
Fish number 3 $$F_3^{63}(3)$$
Mossol {10,10(1)10,100}
Godthroogahlah E100#^#*##100
Mossolplex {10,10(1)10,{10,10(1)10,100}}
Bossol {10,10(1)10,10,100}
Godtetroogahlah E100#^#*###100
Trossol {10,10(1)10,10,10,100}
Godpentoogahlah E100#^#*####100
Quintossol {10,10(1)10,10,10,10,10,100}
Diteral {10,10 (1)(1) 2}
Dubol {10,100 (1)(1) 2}
Deutero-godgahlah E100#^#*#^#100
Diteralplex {10,diteral (1)(1) 2}
Dutrol {10,100 (1)(1) 3}
Dossol {10,10 (1)(1) 100}
Deutero-godgoldgahlah E100#^#*#^#*#100
Dossolplex {10,10 (1)(1) dossol}
Dutritri {3,3,3 (1) 3,3,3 (1) 3,3,3}
Dutridecal {10,10,10 (1) 10,10,10 (1) 10,10,10}
Trito-godgahlah E100#^#*#^#*#^#100
Teterto-godgahlah E100#^#*#^#*#^#*#^#100
Pepto-godgahlah E100#^##5
Exto-godgahlah E100#^##6
Epto-godgahlah E100#^##7
Ogdo-godgahlah E100#^##8
Xappol {10,10 (2) 2}
Goxxol {10,100 (2) 2}
Gridgahlah E100#^##100

## Exponentiated polynomial omega level ($$f_{\omega^{\omega^2}}(f_3(10))$$ - $$f_{\omega^{\omega^\omega}}(f_3(10))$$)

Name Number
Xappolplex {10,xappol (2) 2}
Grand gridgahlah E100#^##100#2
Grand xappol {10,10 (2) 3}
Gridtrigahlah E100#^##100#^##100
Deutero-gridgahlah E100#^##*#^##100
Dimentri {3,3 (3) 2}
Trito-gridgahlah E100#^##*#^##*#^##100
Teterto-gridgahlah E100#^##*#^##*#^##*#^##100
Colossol {10,10 (3) 2}
Kubikahlah E100#^###100
Colossolplex {10,colossol (3) 2}
Deutero-kubikahlah E100#^###*#^###100
Trito-kubikahlah E100#^###*#^###*#^###100
Terossol {10,10 (4) 2}
Quarticahlah E100#^####100
Terossolplex {10,terossol (4) 2}
Deutero-quarticahlah E100#^####*#^####100
Petossol {10,10 (5) 2}
Quinticahlah E100#^#####100
Petossolplex {10,petossol (5) 2}
Ectossol {10,10 (6) 2}
Sexticahlah E100#^######100
Ectossolplex {10,ectossol (6) 2}
Zettossol {10,10 (7) 2}
Septicahlah E100#^#######100
Zettossolplex {10,zettossol (7) 2}
Yottossol {10,10 (8) 2}
Octicahlah E100#^########100
Yottossolplex {10,yottossol (8) 2}
Nonicahlah E100#^#^#9
Xennossol {10,10 (9) 2}
Xennossolplex {10,xennossol (9) 2}
Dimendecal {10,10 (10) 2}
Decicahlah E100#^#^#10
Gongulus {10,10 (100) 2}
Godgathor E100#^#^#100

## Double exponentiated polynomial omega level ($$f_{\omega^{\omega^\omega}}(f_3(10))$$ - $$f_{\omega^{\omega^{\omega^\omega}}}(f_3(10))$$)

Name Value
Gongulusplex {10,10 (gongulus) 2}
Grand godgathor E100#^#^#100#2
Gongulusduplex {10,10 (gongulusplex) 2}
Gotrigathor E100#^#^#100#^#^#100
Deutero-godgathor E100#^#^#*#^#^#100
Trito-godgathor E100#^#^#*#^#^#*#^#^#100
Hecato-godgathor E100#^(#^#*#)100
Godgridgathor E100#^(#^#*##)100
Dulatri {3,3 (0,2) 2}
Godkubikgathor E100#^(#^#*###)100
Gingulus {10,100 (0,2) 2}
Godgathordeus E100#^(#^#*#^#)100
Trilatri {3,3 (0,3) 2}
Gangulus {10,100 (0,3) 2}
Godgathortruce E100#^(#^#*#^#*#^#)100
Geengulus {10,100 (0,4) 2}
Gowngulus {10,100 (0,5) 2}
Godgathorquid E100#^#^##5
Gungulus {10,100 (0,6) 2}
Godgathorsid E100#^#^##6
Bongulus {10,100 (0,0,1) 2}
Gralgathor E100#^#^##100
Bingulus {10,100 (0,0,2) 2}
Gralgathordeus E100#^(#^##*#^##)100
Trimentri {3,3 (0,0,0,1) 2} = {3,3 ((1)1) 2}
Bangulus {10,100 (0,0,3) 2}
Gralgathortruce E100#^(#^##*#^##*#^##)100
Beengulus {10,100 (0,0,4) 2}
Trongulus {10,100 (0,0,0,1) 2}
Thraelgathor E100#^#^###100
Thraelgathordeus E100#^(#^###*#^###)100
Terinngathor E100#^#^####100
Pentaelgathor E100#^#^#####100
Hexaelgathor E100#^#^######100
Heptaelgathor E100#^#^#######100
Octaelgathor E100#^#^########100
Goplexulus $$\lbrace10,100 (\underbrace{0,0,\ldots ,0,0,}_{100 \text{ zeroes}}1) 2\rbrace$$ = {10,100 ((1)1) 2}
Godtothol E100#^#^#^#100

## Triple exponentiated polynomial omega level ($$f_{\omega^{\omega^{\omega^\omega}}}(f_3(10))$$ - $$f_{\omega^{\omega^{\omega^{\omega^\omega}}}}(f_3(10))$$)

Name Value
Godtotholdeus E100#^(#^#^#*#^#^#)100
Godtotholcentice E100#^#^(#^#*#)100
Hyper-godgathordeuterfact E100#^#^(#^#*##)100
Hyper-godgathordeus E100#^#^(#^#*#^#)100
Extendol s(3,3{1`2}2)
Hyper-godgathortruce E100#^#^(#^#*#^#*#^#)100
Graltothol E100#^#^#^##100
Hyper-gralgathordeus E100#^#^(#^##*#^##)100
Thraeltothol E100#^#^#^###100
Terinntothol E100#^#^#^####100
Pentaeltothol E100#^#^#^#####100
Goduplexulus {10,100 ((100)1) 2} = {10,100 ((0,1)1) 2}
Godtertol E100#^#^#^#^#100

## Iterated Cantor normal form level ($$f_{\omega^{\omega^{\omega^{\omega^\omega}}}}(f_3(10))$$ - $$f_{\varepsilon_0}^2(10)$$)

Name Value
Hyper-hyper-godgathordeus E100#^#^#^(#^#*#^#)100
Graltertol E100#^#^#^#^##100
Thraeltertol E100#^#^#^#^###100
Gotriplexulus $$\lbrace 10,100 ((\underbrace{0,0,\ldots ,0,0,}_{100 \text{ zeroes}}1)1) 2\rbrace$$ = {10,100 (((1)1)1) 2}
Godtopol E100#^#^#^#^#^#100
Graltopol E100#^#^#^#^#^##100
Godhathor E100#^#^#^#^#^#^#100
Godheptol E100#^#^#^#^#^#^#^#100
Godoctol E100#^#^#^#^#^#^#^#^#100
Godentol E100#^#^#^#^#^#^#^#^#^#100
Goddekathol E100#^#^#^#^#^#^#^#^#^#^#100
Tethrathoth E100#^^#100
Goppatoth 10↑↑100 & 10
Nucleaxul 200![200200]
Giaquaxul 200![200,200,200,200]

## Epsilon level ($$f_{\varphi(1,0)}^2(10)$$ aka $$f_{\varepsilon_0}^2(10)$$ - $$f_{\varphi(2,0)}^2(10)$$ aka $$f_{\zeta_0}^2(10)$$)

Name Value
Grand tethrathoth E100#^^#100#2
Goppatothplex 10↑↑(goppatoth) & 10
Grantethrathoth E100#^^#100#100
Gugolda-carta-tethrathoth E100#^^#100##100
Godgahlah-carta-tethrathoth E100#^^#100#^#100
Tethratrithoth E100#^^#100#^^#100
Tethraterthoth E100#^^#100#^^#100#^^#100
Tethrathoth-by-hyperion E100#^^#*#100
Tethrathoth-by-godgahlah E100#^^#*#^#100
Tethrathoth-by-godgathor E100#^^#*#^#^#100
Deutero-tethrathoth E100#^^#*#^^#100
Trito-tethrathoth E100#^^#*#^^#*#^^#100
Hecato-tethrathoth E100(#^^#)^#100
Grideutertethrathoth E100(#^^#)^##100
Tethragodgathor E100(#^^#)^#^#100
Tethrathruliath E100(#^^#)^(#^^#*#^^#)100
Monster-Giant E100(#^^#)^(#^^#)^#100
Monster-Grid E100(#^^#)^(#^^#)^##100
Monster-Hecateract E100(#^^#)^(#^^#)^#^#100
Super Monster-Giant E100(#^^#)^(#^^#)^(#^^#)^#100
Terrible tethrathoth E100(#^^#)^^#100
Terrible terrible tethrathoth E100((#^^#)^^#)^^#100
Tethrathoth ba'al E100#^^#>#100
Great and Terrible Tethrathoth E100#^^#>#100#2
Grangol-carta-tethriterator E100#^^#>#100#100
Tethriterhecate E100#^^#>#*#100
Deutero-tethriterator E100#^^#>#*#^^#>#100
Tethriterfact E100(#^^#>#)^#100
Terrible tethriterator E100(#^^#>#)^^#100
Tethriditerator E100#^^#>(#+#)100
Tethrigriditerator E100#^^#>##100
Tethrispatialator E100#^^#>#^#100
Dustaculated-tethrathoth E100#^^#>#^^#100
Gippatoth 100↑↑(2 × 100) & 10
Tristaculated-tethrathoth E100#^^#>#^^#>#^^#100
Gappatoth 100↑↑(3 × 100) & 10
Geepatoth 100↑↑(4 × 100) & 10
Tethracross E100#^^##100
Boppatoth 100↑↑(1002) & 10

## Binary phi level ($$f_{\varphi(2,0)}^2(10)$$ or $$f_{\zeta_0}^2(10)$$ - $$f_{\varphi(1,0,0)}^2(10)$$ or $$f_{\Gamma_0}^2(10)$$)

Name Value
Terrible tethracross E100(#^^##)^^#100
Tethriterated-tethracross E100(#^^##)^^#>#100
Secundotethrated-tethracross E100(#^^##)^^##100
Tethritercross E100#^^##>#100
Dustaculated-tethracross E100#^^##>#^^##100
Tethracubor E100#^^###100
Troppatoth 100↑↑(1003) & 10
Terrible tethracubor E100(#^^###)^^#100
Terrisquared-tethracubor E100(#^^###)^^##100
Tethritercubor E100#^^###>#100
Dustaculated-tethracubor E100#^^###>#^^###100
Tethrateron E100#^^####100
Terrible tethrateron E100(#^^####)^^#100
Tethra-hectateron E100#^^####>#100
Dustaculated-tethrateron E100#^^####>#^^####100
Tethrapeton E100#^^#####100
Tethrahexon E100#^^######100
Tethrahepton E100#^^#^#7
Tethra-ogdon E100#^^#^#8
Tethrennon E100#^^#^#9
Tethratope E100#^^#^#100
Tethratopothoth E100#^^(#^#*#)100
Tethratopodeus E100#^^(#^#*#^#)100
Tethralattitope E100#^^#^##100
Tethrato-godgathor E100#^^#^#^#100
Tethrato-godtothol E100#^^#^#^#^#100
Tethrato-tethrathoth E100#^^#^^#100
Tethrarxitet E100#^^#^^#^^#100
Pentacthulhum E100#^^^#100
Kungulus X↑↑↑100 & 10

## Bachmann's collapsing level ($$f_{\varphi(1,0,0)}^2(10)$$ or $$f_{\Gamma_0}^2(10)$$ - $$f_{\psi_0(\varepsilon_{\Omega+1})}^2(10) = f_{\psi_0(\Omega_2)}^2(10)$$ with respect to the Buchholz's function)

Name Value
Pentacthuldugon E100(#^^^#)^^^#100
Pentacthuliterator E100#^^^#>#100
Hugexul 200![200(1)200]
Superior Hugexul 200![200(1)200,200]
Dustaculated-pentacthulhum E100#^^^#>#^^^#100
Pentacthulcross E100#^^^##100
Bisuperior Hugexul 200![200(1)200,200,200]
Pentacthulcubor E100#^^^###100
Pentacthulteron E100#^^^####100
Pentacthultope E100#^^^#^#100
Pentacthularxitri E100#^^^#^^^#100
Hexacthulhum E100#^^^^#100
Hugebixul 200![200(1)200(1)200]
Hexacthuliterator E100#^^^^#>#100
Superior Hugebixul 200![200(1)200(1)200,200]
Hexacthulcross E100#^^^^##100
Hexacthultope E100#^^^^#^#100
Heptacthulhum E100#^^^^^#100 = E100#{5}#100
Hugetrixul 200![200(1)200(1)200(1)200]
Ogdacthulhum E100#^^^^^^#100 = E100#{6}#100
Hugequaxul 200![200(1)200(1)200(1)200(1)200]
Ennacthulhum E100#{7}#100
Dekacthulhum E100#{8}#100
Goliath E100#{10}#100
Godsgodgulus E100#{#}#100
Godsgodeugulus E100(#{#}#){#}#100
Godsgodguliterator E100#{#}#>#100
Godsgodgulcross E100#{#}##100
Godsgodgultope E100#{#}#^#100
Godsgodarxitri E100#{#}#{#}#100
Godsgodeus E100#{#+#}#100
The centurion E100#{#^#}#100
Super centurion E100#{#^^#}#100
Ohmygosh-ohmygosh-ohmygooosh E100#{#{#}#}#100
Blasphemorgulus E100{#,#,1,2}100
Hundrelasphemorgue E100{#,#+1,1,2}100
Enormaxul 200![200(2)200]
Superior Enormaxul 200![200(2)200,200]
Bisuperior Enormaxul 200![200(2)200,200,200]
Enormabixul 200![200(2)200(2)200]
Enormatrixul 200![200(2)200(2)200(2)200]
Enormaquaxul 200![200(2)200(2)200(2)200(2)200]
Goobawamba {10,100 (1) 2} & 10
Destruxul 200![200(200)200]
Great Destruxul 200![200(200)200(200)200]
Bigreat Destruxul 200![200(200)200(200)200(200)200]
Bird's number $$f_{\vartheta(\Omega^{\omega})+2}(f_{\vartheta(\Omega^{\omega})+1}(f_{\vartheta(\Omega^{\omega})}(f_{\vartheta(\Omega^{\omega})}(7))))$$
TREE(3) (lower bound)
Destrubixul 200![200([200(200)200])200]
Destrutrixul 200![200([200([200(200)200])200])200]
Destruquaxul 200![200([200([200([200(200)200])200])200])200]
Golapulus 10100&10&10
Ginglapulus {10,100 (0,2) 2} & 10
Ganglapulus {10,100 (0,3) 2} & 10
Geenglapulus {10,100 (0,4) 2} & 10
Bolapulus {10,100 (0,0,1) 2} & 10
Binglapulus {10,100 (0,0,2) 2} & 10
Trolapulus {10,100 (0,0,0,1) 2} & 10
Quadrolapulus {10,100 (0,0,0,0,1) 2} & 10
Goplapulus {10,100 ((1)1) 2} & 10
Giplapulus {10,100 ((1)(1)1) 2} & 10
Boplapulus {10,100 ((2)1) 2} & 10
Goduplapulus {10,100 ((0,1)1) 2} & 10
Gotriplapulus {10,100 (((1)1)1) 2} & 10
Extremexul 200![1(1)[2200,200,200,200]]

## Higher computable level ($$f_{\psi_0(\varepsilon_{\Omega+1})}^2(10) = f_{\psi_0(\psi_2(0))}^2(10)$$ with respect to Buchholz's function - ???)

Since the comparison (or even the well-definedness) of numbers of this level is unknown, the order of entries does not necessarily imply the order of the sizes. Also, several numbers are defined by an OCF, which is uncomputable, and are not known to be computable.

Name Value
Extremebixul 200![1(1)[2200,200,200,200,200]]
Extremetrixul 200![1(1)[2200,200,200,200,200,200]]
Extremequaxul 200![1(1)[2200,200,200,200,200,200,200]]
Gigantixul 200![1(1)[3200,200,200]]
Gigantibixul 200![1(1)[3200,200,200,200]]
Gigantitrixul 200!1(1)[3200,200,200,200,200]]
Gigantiquaxul 200![1(1)[3200,200,200,200,200,200]]
Nucleabixul 200![[200200]200]
SCG(13) (lower bound)

Nucleatrixul 200![[[200200]200]200]
Nucleaquaxul 200![[[[200200]200]200]200]
Kumakuma 3 variables ψ number F10100(10100)
グラハム数ver ε.0.1.0 G64(4)
Bashicu matrix number with respect to Bashicu matrix system version 2.3
(N primitive)
Y sequence number f2000(1)
the least transcendental integer

## Uncomputable numbers

The term "uncomputable number" here refers to the numbers defined in terms of uncomputably fast-growing functions. This table contains large numbers which are known to be ill-defined. For more details on the ill-definedness, click the "More..." link below.

Name Value Ill-defined?
1919-th busy beaver $$\Sigma(1919)$$ No
Fish number 4 F463(3) No
$$\Xi(10^6)$$ No
$$\Sigma_\infty(10^9)$$ No
Rayo's number Rayo(10100) Partially (see #Axiom)
Fish number 7 F763(10100) Partially
BIG FOOT FOOT10(10100) Yes (see #Ill-definedness)
Little Bigeddon Yes
Sasquatch Yes
Large Number Garden Number $$f^{10}(10 \uparrow^{10} 10)$$ Not determined yet
Oblivion Yes (unformalised)
Utter Oblivion Yes (unformalised)

## Notes

1. (S) means "in the short scale", and (L) means "in the long scale".