This is a notation created by NigerianPidgin[1] The definition provided is quite lengthy:
Αn = 10^n
ΑΑn = 10^10^n
Α^m(n) = (10^)^m n
Βn = 10^^^n
ΒΒn = 10^^^10^^^n
Β^m(n) = (10^^^)^m n
Γn = 10{n+5}10
ΓΓn = 10{10{n+5}10}10
Γ^m(n) = (10{)^m n+5 (}10)^m
Δn = 10{{n+1}}10
ΔΔn = 10{{10{{n+1}}10}}10
Δ^m(n) = (10{{)^m n+5 (}}10)^m
Εn = 10{{{n+1}}}10
ΕΕn = 10{{{10{{{n+2}}}10}}}10
Ε^m(n) = (10{{{)^m n+5 (}}}10)^m
Ζn = {10, 10, 10, n+3}
ΖΖn = {10, 10, 10, {10, 10, 10, n-3}}
Analysis[]
Analysis by TheInfinitySeeker:
- An = 10^n = En#1
- A^n(1) = 10^^n = E1#n
- Bn = 10^^^n = E1#1#n
- B^n(1) = 10^^^^n = E1#1#1#n
- Gamma n = 10{n+5}10 (growth rate omega)
- Gamma^n(1) > 10{{1}}n+1 (growth rate omega+1)
- Delta n = 10{{n+1}}10 (growth rate 2*omega)
- Delta^n(1) > 10{{{1}}}n+1 (growth rate 2*omega+1)
- E n = 10{{{n+1}}}10 (growth rate 3*omega)
- E^n(1) > 10{{{{1}}}}n+1 (growth rate 3*omega+1)
- Zn = {10,10,10,n+3} (growth rate omega^2)
- Z^n(1) > {10,n+1,1,1,2} (growth rate 1+omega^2)
A10 = 10^10
A^10(1) = 10^^10
B10 = 10^^^10
B^10(1) = 10^^^^10
Gamma 0 = 10^^^^^10
Gamma 1 = 10^^^^^^10
...
Delta 1 = {10,10,2,2}
etc
Sources[]
- ↑ https://sites.google.com/view/nigerianpidgs7/greek-notation Retrieved UTC 2025/01/19