The octal-goobol is equal to \(\{8,100(1)2\}\). The term was coined by HaydenTheGoogologist2009.[1]
Approximations[]
Notation | Approximation |
---|---|
Bird's array notation | \(\lbrace8,100[2]2\rbrace\) (exact) |
DeepLineMadom's Array Notation | \(8[1\{2\}2]100\) |
Hyper-E notation | \(E[8]8\#^{99}100\) |
Cascading-E notation | \(E[8]8\#\text{^}\#99\) |
Hyperfactorial array notation | \(8![1,1,1,2]\) |
Strong array notation | \(s(8, 100 \{2\} 2)\) |
X-Sequence Hyper-Exponential Notation | \(8\{X^{98}\}100\) |
Fast-growing hierarchy | \(f_{\omega^{98}}(8)\) |
Hardy hierarchy | \(H_{\omega^{\omega^{98}}}(8)\) |
Slow-growing hierarchy | \(g_{\vartheta(\Omega^{\omega})}(8)\) |
Sources[]
- ↑ Hayden's Big Numbers - Goobol series. Retrieved 2022-09-29.