The Pete.c numbers were a series of seven numbers made by Bignum Bakeoff[1] contestant Pete[2].
Programs[]
pete-4.c[]
pete-4.c's program is as follows:
#define F(Q,R,P) Q(int x){int i=x;while(i--)x=R(x,x);return x;}\ P(int L,int x){int i=x;if(L--)while(i--)x=P(L,x);return Q(x);} #define Y(A,z,B,C,D,E,G,H,I,J,K,M,N,O,S,T,U,V,W)\ F(A,z,B)F(C,B,D)F(E,D,G)F(H,G,I)F(J,I,K)F(M,K,N)F(O,N,S)F(T,S,U)F(V,U,W) Z(int L,int x) { int i = x; if(L--) while(i--) x = Z(L,x); return x << x; } Y(a,Z,b,c,d,e,g,h,X,j,k,m,n,o,s,t,u,v,w) Y(Aa,w,Ba,Ca,Da,Ea,Ga,Ha,Ia,Ja,Ka,Ma,Na,Oa,Sa,Ta,Ua,Va,Wa) Y(Ab,Wa,Bb,Cb,Db,Eb,Gb,Hb,Ib,Jb,Kb,V,U,W,T,S,O,N,M) F(A,M,B) F(C,B,D) F(E,D,G) F(H,G,I) F(J,I,K) int main() { return K(99999,9); }
Its lower bound is \(f_{\omega32+10^5}(9)\) and its upper bound is \(f_{\omega32+10^5}(11)\).
pete-5.c[]
pete-5.c's program is as follows:
int C = 999; A(int S,int R,int P,int O,int N,int M,int L,int K,int J,int F,int E) { int D = C; if(E--) while(D--) C = A(S,R,P,O,N,M,L,K,J,F,E); return F-- ? A(S,R,P,O,N,M,L,K,J,F,C) : J-- ? A(S,R,P,O,N,M,L,K,J,C,C) : K-- ? A(S,R,P,O,N,M,L,K,C,C,C) : L-- ? A(S,R,P,O,N,M,L,C,C,C,C) : M-- ? A(S,R,P,O,N,M,C,C,C,C,C) : N-- ? A(S,R,P,O,N,C,C,C,C,C,C) : O-- ? A(S,R,P,O,C,C,C,C,C,C,C) : P-- ? A(S,R,P,C,C,C,C,C,C,C,C) : R-- ? A(S,R,C,C,C,C,C,C,C,C,C) : S-- ? A(S,C,C,C,C,C,C,C,C,C,C) : C * C; } #define Q ,C,C,C,C,C,C,C,C,C,C) main() {return A(A(A(A(A(A(A(A(A(A(A(A(A(A(A(A(C Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q;}
Its lower bound is \(f_{\omega^{11}}^{16}(999)\) and its upper bound is \(f_{\omega^{11}}^{16}(1031)\).
pete-6.c[]
pete-6.c's program is as follows:
#define M E H,h,g,f #define L E G,p,o,n #define K E w,v #define J ,B,B #define I J J #define H G,p,o,n,m,l,k,j,i #define G w,v,u,t,s,r,q #define F I I #define E --?A( #define D ,B): #define C ,int int B = 9 << 9999; A(int w C v C u C t C s C r C q C p C o C n C m C l C k C j C i C h C g C f C e C d C c C b C a) { int y = B; if(a--) while(y--) B = A(H,h,g,f,e,d,c,b,a); return b M,e,d,c,b D c M,e,d,c,B D d M,e,d J D e M,e J,B D f M I D g E H,h,g I,B D h E H,h I J D i E H I J,B D j L,m,l,k,j F D k L,m,l,k F,B D l L,m,l F J D m L,m F J,B D n L F I D o E G,p,o F I,B D p E G,p F I J D q E G F I J,B D r K,u,t,s,r F F D s K,u,t,s F F,B D t K,u,t F F J D u K,u F F J,B D v K F F I D w E w F F I,B D B * B; } main(){return A(B I F F J);}
Its lower bound is \(f_{\omega^{23}}(2^{9999}\cdot 9)\) while its upper bound is \(f_{\omega^{23}}(2^{9999}\cdot 9+2)\).
See also[]
Large numbers in computers
Main article: Numbers in computer arithmetic
127 · 128 · 256 · 32767 · 32768 · 65536 · 2147483647 · 4294967296 · 9007199254740991 · 9223372036854775807 · FRACTRAN catalogue numbersBignum Bakeoff contestants: pete-3.c · pete-9.c · pete-8.c · harper.c · ioannis.c · chan-2.c · chan-3.c · pete-4.c · chan.c · pete-5.c · pete-6.c · pete-7.c · marxen.c · loader.c
Channel systems: lossy channel system · priority channel system
Concepts: Recursion
External links[]
- ↑ http://djm.cc/bignum-results.txt
- ↑ pfilandr@mindspring.com