Phigol is equal to \(\lfloor 10^{99}\phi \rfloor\), or the first 100 digits of \(\phi\) without the decimal point.[1] Its full decimal expansion is:
Its prime factorization is 3 × 8,342,699,992,611,683 × 200,346,780,527,216,943,982,143,179,768,801,147 × 322,683,969,787,780,736,862,368,046,487,637,814,725,351,618,779.
Approximations[]
Notation | Lower bound | Upper bound |
---|---|---|
Scientific notation | \(1.618\times10^{99}\) | \(1.619\times10^{99}\) |
Arrow notation | \(55\uparrow57\) | \(180\uparrow44\) |
Steinhaus-Moser Notation | 56[3] | 57[3] |
Copy notation | 1[100] | 2[100] |
Taro's multivariable Ackermann function | A(3,326) | A(3,327) |
Pound-Star Notation | #*(1,3,4,9,2,5,1)*9 | #*(11,7,10,8,7,3)*11 |
BEAF | {55,57} | {180,44} |
Hyper-E notation | E99 | 2E99 |
Bashicu matrix system | (0)(0)(0)(0)(0)[1259] | (0)(0)(0)(0)(0)[1260] |
Bird's array notation | {55,57} | {180,44} |
Hyperfactorial array notation | 69! | 70! |
Strong array notation | s(55,57) | s(180,44) |
Fast-growing hierarchy | \(f_2(321)\) | \(f_2(322)\) |
Hardy hierarchy | \(H_{\omega^2}(321)\) | \(H_{\omega^2}(322)\) |
Slow-growing hierarchy | \(g_{\omega^{\omega2+4}6}(31)\) | \(g_{\omega^{\omega+16}4}(44)\) |
Sources[]
See also[]
Hypermathematics: bigoogol · trigoogol · quadrigoogol · coogol(plex)
Hyperlicious: wakoogol(plex) · wakamoogol(plex) · wonkapoogol(plex) · ultron
Numbers with a W: woogol · wiggol · waggol · weegol · wigol · woggol · wagol · bwoogol · bwiggol · bwaggol · bweegol · bwigol · bwoggol · bwagol
Primes: Gooprol(plex) · Booprol · Trooprol · Quadrooprol
Other: Bentley's Number · Pigol · Egol · Phigol · gongol(plex) · kaboodol(plex) · gaz(illion)