Pigol is equal to \(\lfloor 10^{99}\pi \rfloor\), or the first 100 digits of the decimal expansion of pi without the decimal point.[1] Its full decimal expansion is:
3,141,592,653,589,793,238,462,643,383,279,502,884,197,169,399,375,105,820,974,944,592,307,816,406,286,208,998,628,034,825,342,117,067
Its full prime factorization is:
3 × 53 × 4,591 × 1,906,607 × 2,257,273,964,472,670,855,547,916,413,253,002,746,375,718,990,367,443,254,675,710,970,626,921,263,609,977,043,045,749.
Approximations[]
Notation | Lower bound | Upper bound |
---|---|---|
Scientific notation | \(3.141\times10^{99}\) | \(3.142\times10^{99}\) |
Arrow notation | \(118\uparrow48\) | \(131\uparrow47\) |
Steinhaus-Moser Notation | 56[3] | 57[3] |
Copy notation | 2[100] | 3[100] |
Taro's multivariable Ackermann function | A(3,327) | A(3,328) |
Pound-Star Notation | #*(9,8,6,5,9,3)*11 | #*(13,11,2,0,2)*15 |
BEAF | {118,48} | {131,47} |
Hyper-E notation | 3E99 | 4E99 |
Bashicu matrix system | (0)(0)(0)(0)(0)[1286] | (0)(0)(0)(0)(0)[1287] |
Bird's array notation | {118,48} | {131,47} |
Hyperfactorial array notation | 69! | 70! |
Strong array notation | s(118,48) | s(131,47) |
Fast-growing hierarchy | \(f_2(322)\) | \(f_2(323)\) |
Hardy hierarchy | \(H_{\omega^2}(322)\) | \(H_{\omega^2}(323)\) |
Slow-growing hierarchy | \(g_{\omega^{53}24}(71)\) | \(g_{\omega^{55}50}(60)\) |
Sources[]
See also[]
Numbers from A googol is a tiny dot
Hypermathematics: bigoogol · trigoogol · quadrigoogol · coogol(plex)
Hyperlicious: wakoogol(plex) · wakamoogol(plex) · wonkapoogol(plex) · ultron
Numbers with a W: woogol · wiggol · waggol · weegol · wigol · woggol · wagol · bwoogol · bwiggol · bwaggol · bweegol · bwigol · bwoggol · bwagol
Primes: Gooprol(plex) · Booprol · Trooprol · Quadrooprol
Other: Bentley's Number · Pigol · Egol · Phigol · gongol(plex) · kaboodol(plex) · gaz(illion)