A quattuorviginticentillion is equal to \(10^{375}\) in the short scale and \(10^{744}\) in the long scale by the Conway and Guy's naming system[1][2][3][4] as it is the 124th -illion number.
In the long scale, \(10^{375}\) is called duosexagintilliard.
\(10^{375}\) is also called agrasara.[5]
Approximations[]
For the short scale:
Notation | Lower bound | Upper bound |
---|---|---|
Scientific notation | \(1\times10^{375}\) (exact) | |
Arrow notation | \(10\uparrow 375\) (exact) | |
Steinhaus-Moser Notation | 168[3] | 169[3] |
Chained arrow notation | \(10\rightarrow 375\) (exact) | |
Taro's multivariable Ackermann function | A(3,1242) | A(3,1243) |
BEAF & Bird's array notation | {10,375} (exact) | |
Hyper-E notation | E375 (exact) | |
s(n) map | \(s(1)^3(\lambda x.x+1)(7)\) | \(s(1)^3(\lambda x.x+1)(8)\) |
m(n) map | m(1)(168) | m(1)(169) |
Bashicu matrix system | (0)(0)(0)(0)(0)(0)(0)(0)[29] | (0)(0)(0)(0)(0)(0)(0)(0)[30] |
Copy notation | 9[375] | 10[188] |
H* function | H(124) | |
Pound-Star Notation | #*((572))*12 | #*((573))*12 |
Hyperfactorial array notation | 200! | 201! |
Fast-growing hierarchy | \(f_2(1235)\) | \(f_2(1236)\) |
Hardy hierarchy | \(H_{\omega^2}(1235)\) | \(H_{\omega^2}(1236)\) |
Slow-growing hierarchy | \(g_{\omega^{\omega^2 3+\omega 7+5}}(10)\) (exact) |
For the long scale:
Notation | Lower bound | Upper bound |
---|---|---|
Scientific notation | \(1\times10^{744}\) (exact) | |
Arrow notation | \(10\uparrow 744\) (exact) | |
Steinhaus-Moser Notation | 300[3] | 301[3] |
Chained arrow notation | \(10\rightarrow 744\) (exact) | |
Taro's multivariable Ackermann function | A(3,2468) | A(3,2469) |
BEAF & Bird's array notation | {10,744} (exact) | |
Hyper-E notation | E744 (exact) | |
s(n) map | \(s(1)^3(\lambda x.x+1)(8)\) | \(s(1)^3(\lambda x.x+1)(9)\) |
m(n) map | m(1)(300) | m(1)(301) |
Bashicu matrix system | (0)(0)(0)(0)(0)(0)(0)(0)(0)[28] | (0)(0)(0)(0)(0)(0)(0)(0)(0)[29] |
Fast-growing hierarchy | \(f_2(2460)\) | \(f_2(2461)\) |
Hardy hierarchy | \(H_{\omega^2}(2460)\) | \(H_{\omega^2}(2461)\) |
Slow-growing hierarchy | \(g_{\omega^{\omega^2 7+\omega 4+4}}(10)\) (exact) |
Sources[]
- ↑ Conway and Guy. (1995) "The book of Numbers" Copernicus
- ↑ Munafo, Robert. The Conway-Wechsler System. Retrieved 2023-02-11.
- ↑ Olsen, Steve. Big-Ass Numbers. Retrieved 2023-02-11.
- ↑ Fish. Conway's zillion numbers. Retrieved 2023-02-11.
- ↑ [1]
See also[]
110–119: decicentillion (un- · duo- · tre- · quattuor- · quin- · se- · septen- · octo- · noven-)
120–129: viginticentillion (un- · duo- · tres- · quattuor- · quin- · ses- · septem- · octo- · novem-)
130–139: trigintacentillion (un- · duo- · tres- · quattuor- · quin- · ses- · septen- · octo- · noven-)
140–149: quadragintacentillion (un- · duo- · tres- · quattuor- · quin- · ses- · septen- · octo- · noven-)
150–159: quinquagintacentillion (un- · duo- · tres- · quattuor- · quin- · ses- · septen- · octo- · noven-)
160–169: sexagintacentillion (un- · duo- · tre- · quattuor- · quin- · se- · septen- · octo- · noven-)
170–179: septuagintacentillion (un- · duo- · tre- · quattuor- · quin- · se- · septen- · octo- · noven-)
180–189: octogintacentillion (un- · duo- · tres- · quattuor- · quin- · sex- · septem- · octo- · novem-)
190–199: nonagintacentillion (un- · duo- · tre- · quattuor- · quin- · se- · septe- · octo- · nove-)
Indian counting system: Lakh · Crore · Padma · Tallakshana · Ogha · Ababa · Atata · Sogandhika · Uppala · Dvajagravati · Kumuda · Pundarika · Paduma · Kathana · Mahakathana · Asankhyeya · Dvajagranisamani · Vahanaprajnapti · Inga · Kuruta · Sarvanikshepa · Agrasara · Uttaraparamanurajahpravesa · Avatamsaka Sutra · Nirabhilapya nirabhilapya parivarta · Jaghanya Parīta Asaṃkhyāta
Chinese, Japanese and Korean counting system: Wan · Yi · Zhao · Jing · Gai · Zi · Rang · Gou · Jian · Zheng · Zai · Ji · Gougasha · Asougi · Nayuta · Fukashigi · Muryoutaisuu
See also: Template:Googology in Japan