11,884
pages

The Quintgrand Hugexul is equal to ((...((200![200(1)200])![200(1)200])![200(1)200]...)![200(1)200])![200(1)200] (with Quadgrand Hugexul parentheses), using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

### Etymology

The name of this number is based on Latin prefix "quint-" and the number "grand Megahugexul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,7,202[1[1\neg3]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,7,202[1[1/2\sim2]200]2\}$$
BEAF $$\{200,7,202(\{X,X*199,1,2\})2\}$$[2]
Fast-growing hierarchy (with this system of fundamental sequences) $$f_{\Gamma_{198}+200}^5(f_{\Gamma_{198}+199}(200))$$
Hardy hierarchy (with this system of fundamental sequences) $$H_{\Gamma_{198}\omega^{200}5+\Gamma_{198}\omega^{199}}(200)$$
Slow-growing hierarchy $$g_{\vartheta(\Omega_2+\varphi(\Omega_2,199)+201)}(6)$$

### Sources

1. Lawrence Hollom's large number site
2. Using particular notation $$\{a,b (A) 2\} = A \&\ a$$ with prime b.