The septenary-googol is equal to 7100. It is roughly equal to 3.234*1084 or 3.234 septemvigintillion in short scale.[1] The term was coined by Aarex Tiaokhiao.
Username5243 calls this number Septary-Googol, and it's equal to 7[1]100 in Username5243's Array Notation.[2]
It is 85 digits long.
Decimal expansion[]
3234476509624757991344647769100216810857203198904625400933895331391691459636928060001
Approximations[]
Notation | Lower bound | Upper bound |
---|---|---|
Scientific notation | \(3.234\times10^{84}\) | \(3.235\times10^{84}\) |
Arrow notation | \(7\uparrow100\) | |
Steinhaus-Moser Notation | 49[3] | 50[3] |
Copy notation | 2[85] | 3[85] |
Chained arrow notation | \(7\rightarrow100\) | |
Taro's multivariable Ackermann function | A(3,277) | A(3,278) |
Pound-Star Notation | #*(1,1)*48 | |
PlantStar's Debut Notation | [50] | [51] |
BEAF | {7,100} | |
Hyper-E notation | E[7]100 | |
Bashicu matrix system | (0)(0)(0)(0)(0)[437] | (0)(0)(0)(0)(0)[438] |
Bird's array notation | {7,100} | |
Hyperfactorial array notation | 61! | 62! |
Strong array notation | s(7,100) | |
Fast-growing hierarchy | \(f_2(272)\) | \(f_2(273)\) |
Hardy hierarchy | \(H_{\omega^2}(272)\) | \(H_{\omega^2}(273)\) |
Slow-growing hierarchy | \(g_{\omega^{\omega^22+2}}(7)\) |