11,687
pages

The Superior Bigrand Hugexul is equal to ((...((200![200(1)200,200])![200(1)200,200])![200(1)200,200]...)![200(1)200,200])![200(1)200,200] (with Superior Grand Hugexul parentheses), using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

### Etymology

The name of this number is based on the word "superior" and the number "Bigrand Hugexul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,\{200,\{200,2,201[1[1\neg3]200,200]2\} \\ ,201[1[1\neg3]200,200]2\},201[1[1\neg3]200,200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,\{200,\{200,2,201[1[1/2\sim2]200,200]2\} \\ ,201[1[1/2\sim2]200,200]2\},201[1[1/2\sim2]200,200]2\}$$
BEAF $$\{200,\{200,\{200,2,201(\{X,199X^2+199X,1,2\})2\} \\ ,201(\{X,199X^2+199X,1,2\})2\},201(\{X,199X^2+199X,1,2\})2\}$$[2]
Fast-growing hierarchy (with this system of fundamental sequences) $$f_{\Gamma_{\omega199+199}+200}(f_{\Gamma_{\omega199+199}+200}(f_{\Gamma_{\omega199+199}+199}(200)))$$
Hardy hierarchy (with this system of fundamental sequences) $$H_{\Gamma_{\omega199+199}\omega^{200}2+\Gamma_{\omega199+199}\omega^{199}}(200)$$
Slow-growing hierarchy $$g_{\vartheta(\Omega_2+\varphi(\Omega_2,\Omega199+198)+201)}(3)$$

### Sources

1. Lawrence Hollom's large number site
2. Using particular notation $$\{a,b (A) 2\} = A \&\ a$$ with prime b.