11,579
pages

Superior Kiloenormaquaxul is equal to Superior Enormaquaxul![200(2)200(2)200(2)200,200] or (200![200(2)200(2)200(2)200,200])![200(2)200(2)200(2)200,200], using Hyperfactorial array notation.[1]

### Etymology

The name of this number is based on the word "superior" and the number "Kiloenormaquaxul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,3,201[1[1\neg4]200[1\neg4]200[1\neg4]200[1\neg4]200,200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,3,201[1[1/3\sim2]200[1/3\sim2]200[1/3\sim2]200 \\ [1/3\sim2]200,200]2\}$$
BEAF $$\{200,3,201(\{X,\{X,\{X,\{X,199X^2+199X,1,1,5\} \\ +199X,1,1,4\}+199X,1,1,3\}+199X,1,1,2\})2\}$$[2]
Fast-growing hierarchy (using this system of FSes) $$f_{\varphi(1,0,0,\varphi(2,0,0,\varphi(3,0,0,\varphi(4,0,0,\omega199+199)+199)+199)+199)+199}^2(200)$$
Hardy hierarchy $$H_{\varphi(1,0,0,\varphi(2,0,0,\varphi(3,0,0,\varphi(4,0,0,\omega199+199)+199)+199)+199)\omega^{199}2}(200)$$
Slow-growing hierarchy $$g_{\theta(\varphi(1,0,0,\varphi(2,0,0,\varphi(3,0,0,\varphi(4,0,0,\Omega200+199)+199)+199)+199)+199,} \\ _{\vartheta(\varphi(1,0,0,\varphi(2,0,0,\varphi(3,0,0,\varphi(4,0,0,\Omega200+199)+199)+199)+199)+199))}(200)$$

### Sources

1. Lawrence Hollom's large numbers site
2. Using particular notation $$\{a,b (A) 2\} = A \&\ a$$ with prime b.