11,584
pages

Superior Megahugequaxul is equal to Superior Kilohugequaxul![200(1)200(1)200(1)200(1)200,200] or ((200![200(1)200(1)200(1)200(1)200,200])![200(1)200(1)200(1)200(1)200,200])![200(1)200(1)200(1)200(1)200,200] using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

### Etymology

The name of this number is based on the word "superior" and the number "Megahugequaxul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,4,201[1[1\neg3]200[1\neg3]200[1\neg3]200[1\neg3]200,200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,4,201[1[1/2\sim2]200 \\ [1/2\sim2]200[1/2\sim2]200[1/2\sim2]200,200]2\}$$
BEAF $$\{200,4,201(\{X,\{X,\{X,\{X,199X^2+199X,1,5\}+199X, \\ 1,4\}+199X,1,3\}+199X,1,2\})2\}$$[2]
Fast-growing hierarchy $$f_{\Gamma_{\varphi(2,0,\varphi(3,0,\varphi(4,0,\omega199+199)+199)+199)+199}+199}^3(200)$$
Hardy hierarchy $$H_{\Gamma_{\varphi(2,0,\varphi(3,0,\varphi(4,0,\omega199+199)+199)+199)+199}\omega^{199}3}(200)$$
Slow-growing hierarchy $$g_{\vartheta(\Gamma_{\varphi(2,0,\varphi(3,0,\varphi(4,0,\Omega200+199)+199)+199)+199}+200)}(3)$$

### Sources

1. Lawrence Hollom's large number site
2. Using particular notation $$\{a,b (A) 2\} = A \&\ a$$ with prime b.