A tallakshana is a number described in Lalitavistara Sūtra, a biography of Gautama Buddha, which is equal to \(10^{53}\) according to Robert Munafo's description.[1] It is 54 digits long. This number is equal to 100 sexdecillion in the short scale, or 100 octilliard in long scale.
Decimal expansion[]
Approximations[]
Notation | Lower bound | Upper bound |
---|---|---|
Scientific notation | \(1\times10^{53}\) | |
Arrow notation | \(10\uparrow53\) | |
Steinhaus-Moser Notation | 34[3] | 35[3] |
Copy notation | 9[53] | 10[27] |
Taro's multivariable Ackermann function | A(3,173) | A(3,174) |
Pound-Star Notation | #*(6,7,3,3,4,1)*6 | #*(7,7,3,3,4,1)*6 |
BEAF | {10,53} | |
Bird's Array Notation | {10,53} | |
Graham Array Notation | [10,53] | |
Hyper-E notation | E53 | |
Bashicu matrix system | (0)(0)(0)(0)[2053] | (0)(0)(0)(0)[2054] |
Hyperfactorial array notation | 43! | 44! |
Fast-growing hierarchy | \(f_2(168)\) | \(f_2(169)\) |
Hardy hierarchy | \(H_{\omega^2}(168)\) | \(H_{\omega^2}(169)\) |
Slow-growing hierarchy | \(g_{\omega^{\omega5+3}}(10)\) |
Sources[]
See also[]
Indian counting system: Lakh · Crore · Padma · Tallakshana · Ogha · Ababa · Atata · Sogandhika · Uppala · Dvajagravati · Kumuda · Pundarika · Paduma · Kathana · Mahakathana · Asankhyeya · Dvajagranisamani · Vahanaprajnapti · Inga · Kuruta · Sarvanikshepa · Agrasara · Uttaraparamanurajahpravesa · Avatamsaka Sutra · Nirabhilapya nirabhilapya parivarta · Jaghanya Parīta Asaṃkhyāta
Chinese, Japanese and Korean counting system: Wan · Yi · Zhao · Jing · Gai · Zi · Rang · Gou · Jian · Zheng · Zai · Ji · Gougasha · Asougi · Nayuta · Fukashigi · Muryoutaisuu
See also: Template:Googology in Japan