11,689
pages

Tethrathoth (or simply thoth) is equal to E100#^#^#...#^#^#100 (100 #'s) = E100#^^#100 in Extended Cascading-E Notation.[1][2] The term was coined by Sbiis Saibian. Tethrathoth is comparable to Bowers' goppatoth.

In full form (Cascading-E), this is:

E100#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#100.

## Etymology

The name of this number is based on the Egyptian God of mathemathics, Thoth, and the word "tetration".

## Approximations in other notations

Notation Approximation
BEAF $$X \uparrow\uparrow 99\ \&\ 100$$
Bird's array notation $$\{100,49 [1 \backslash 2] 2\}$$
Hyperfactorial array notation $$100![1,1,1,1,2]$$
Dollar Function $$100[[0]_2]$$
X-Sequence Hyper-Exponential Notation $$100\{X\uparrow\uparrow X\}100$$
Fast-growing hierarchy $$f_{\varepsilon_0}(100)$$
Hardy hierarchy $$H_{\varepsilon_0}(101)$$
Slow-growing hierarchy $$g_{\vartheta(\varepsilon_{\Omega+1})}(100)$$