Advertisement
11,579
pages

Trigrand Enormaquaxul is equal to ((...((200![200(2)200(2)200(2)200])![200(2)200(2)200(2)200])![200(2)200(2)200(2)200]...)![200(2)200(2)200(2)200])![200(2)200(2)200(2)200] (with Bigrand Enormaquaxul parentheses), using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

### Etymology

The name of this number is based on prefix "tri-" and the number "Grand Enormaquaxul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,5,202[1[1\neg4]200[1\neg4]200[1\neg4]200[1\neg4]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,5,202[1[1/3\sim2]200[1/3\sim2]200[1/3\sim2]200[1/3\sim2]200]2\}$$
BEAF $$\{200,5,202(\{X,\{X,\{X,\{X,199X,1,1,5\} \\ +199X,1,1,4\}+199X,1,1,3\}+199X,1,1,2\})2\}$$[2]
Fast-growing hierarchy (using this system of FSes) $$f_{\varphi(1,0,0,\varphi(2,0,0,\varphi(3,0,0,\varphi(4,0,0,198)+199)+199)+199)+200}^3 \\ (f_{\varphi(1,0,0,\varphi(2,0,0,\varphi(3,0,0,\varphi(4,0,0,198)+199)+199)+199)+199}(200))$$
Hardy hierarchy $$H_{\varphi(1,0,0,\varphi(2,0,0,\varphi(3,0,0,\varphi(4,0,0,198)+199)+199)+199)\times(\omega^{200}3+\omega^{199})}(200)$$
Slow-growing hierarchy $$g_{\vartheta(\varphi(1,0,0,\varphi(2,0,0,\varphi(3,0,0,\varphi(4,0,0,\Omega+199)+199)+199)+199)+201)}(4)$$

### Sources

1. Lawrence Hollom's large numbers site
2. Using particular notation $$\{a,b (A) 2\} = A \&\ a$$ with prime b.

Advertisement