11,581
pages

Trigrand kilofaxul is equal to (((...(((200!)!)...)! (with bigrand kilofaxul ()'s) in Hyperfactorial array notation.[1]The term was coined by Lawrence Hollom. It is also equal to 200(!200(!200(!200(!2)+1)+1)+1) in Nested Factorial Notation.

## Etymology

The name of this number is based on Latin prefix "tri-" and the number "grand kilofaxul".

## Approximations in other notations

Notation Approximation
Hyper-E notation $$E10\#(E377\#2)\#3$$
Up-arrow notation $$10 \uparrow\uparrow (10 \uparrow\uparrow (10 \uparrow\uparrow (10 \uparrow 10 \uparrow 377)))$$
Chained arrow notation $$10 \rightarrow (10 \rightarrow (10 \rightarrow (10 \rightarrow (10 \rightarrow (10 \rightarrow 377)) \rightarrow 2) \rightarrow 2) \rightarrow 2) \rightarrow 2$$
BEAF $$\{10,\{10,\{10,\{10,\{10,377\}\},2\},2\},2\}$$
Fast-growing hierarchy $$f^3_3(f^2_2(1\,242))$$
Hardy hierarchy $$H_{(\omega^3) 3+(\omega^2) 2}(200)$$
Slow-growing hierarchy $$g_{\epsilon_{\epsilon_{\epsilon_{\omega^{\omega^\omega}}}}}(200)$$