11,581
pages

Trigrand Megaenormaxul is equal to (...((200![200(2)200)![200(2)200])...![200(2)200])![200(2)200] (with Bigrand Megaenormaxul parentheses) using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

### Etymology

The name of this number is based on prefix "tri-" and the number "Grand Megaenormaxul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,\{200,\{200,\{200,4,201[1[1\neg4]200]2\},201[1[1\neg4]200]2\} \\ ,201[1[1\neg4]200]2\},201[1[1\neg4]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,\{200,\{200,\{200,4,201[1[1/3\sim2]200]2\},201[1[1/3\sim2]200]2\} \\ ,201[1[1/3\sim2]200]2\},201[1[1/3\sim2]200]2\}$$
BEAF $$\{200,\{200,\{200,\{200,4,201(\{X,199X,1,1,2\})2\},201(\{X,199X,1,1,2\})2\} \\ ,201(\{X,199X,1,1,2\})2\},201(\{X,199X,1,1,2\})2\}$$[2]
Fast-growing hierarchy (using this system of FSes) $$f_{\varphi(1,0,0,198)+200}^3(f_{\varphi(1,0,0,198)+199}^3(200))$$
Hardy hierarchy $$H_{\varphi(1,0,0,198)\omega^{200}3+\varphi(1,0,0,198)\omega^{199}3}(200)$$
Slow-growing hierarchy $$g_{\theta(\varphi(1,0,0,\Omega+199)+200,\theta(\varphi(1,0,0,\Omega+199)+200,\theta(\varphi(1,0,0,\Omega+199)+200,\vartheta(\varphi(1,0,0,\Omega+199)+200))))}(3)$$

### Sources

1. Lawrence Hollom's large numbers site
2. Using particular notation $$\{a,b (A) 2\} = A \&\ a$$ with prime b.