11,886
pages

The trigrand kilotetrofaxul is equal to (((...(((200!2)!2)!2)!2)...)!2 (with bigrand kilotetrofaxul ()'s) in Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

### Etymology

The name of this number is based on Greek prefix "tri-" and the number "grand kilotetrofaxul".

### Approximations in other notations

Notation Approximation
Hyper-E notation $$\textrm{E}10\#10\#197\#(\textrm{E}10\#10\#197\#2)\#4$$
Up-arrow notation $$10 \uparrow\uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 198$$
Chained arrow notation $$10 \rightarrow (10 \rightarrow (10 \rightarrow (10 \rightarrow (10 \rightarrow 198 \rightarrow 3) \rightarrow 3)\rightarrow 4) \rightarrow 4)\rightarrow 4$$
BEAF $$\{10,\{10,\{10,\{10,\{10,198,3\},3\},4\},4\},4\}$$
Fast-growing hierarchy $$f_5(f_5(f_5(f_4(f_4(200))))))$$
Hardy hierarchy $$H_{(\omega^5)3+(\omega^4)2}(200)$$
Slow-growing hierarchy $$g_{\eta_{\eta_{\eta_{\zeta_{\zeta_0}}}}}(200)$$