The undecimal-googol is equal to 11100 ~ 1.378*10104.[1] The term was coined by Aarex Tiaokhiao.
Approximations[]
Notation | Lower bound | Upper bound |
---|---|---|
Scientific notation | \(1.378\times10^{104}\) | \(1.379\times10^{104}\) |
Arrow notation | \(11\uparrow100\) | |
Steinhaus-Moser Notation | 58[3] | 59[3] |
Copy notation | 1[105] | 2[105] |
Chained arrow notation | \(11→100\) | |
Taro's multivariable Ackermann function | A(3,342) | A(3,343) |
Pound-Star Notation | #*(6,13,9,9,5,7)*11 | #*(0,1,4,5,4,3,3)*9 |
BEAF | {11,100} | |
Hyper-E notation | E[11]100 | |
Bashicu matrix system | (0)(0)(0)(0)(0)[1796] | (0)(0)(0)(0)(0)[1797] |
Bird's array notation | {11,100} | |
Hyperfactorial array notation | 72! | 73! |
Strong array notation | s(11,100) | |
Fast-growing hierarchy | \(f_2(337)\) | \(f_2(338)\) |
Hardy hierarchy | \(H_{\omega^2}(337)\) | \(H_{\omega^2}(338)\) |
Slow-growing hierarchy | \(g_{\omega^{\omega9+1}}(11)\) |