Unoo-myrol is equal to 10,010. The term was coined by DeepLineMadom.[1] This number belongs to the unoogol regiment.
Properties[]
- Its factors are 1, 2, 5, 7, 10, 11, 13, 14, 22, 26, 35, 55, 65, 70, 77, 91, 110, 130, 143, 154, 182, 286, 385, 455, 715, 770, 910, 1001, 1430, 2002, 5005 and 10010, making it a composite number.[2][3][4] It is also a squarefree number.[5]
- 10010 is an even number[6] .
- 10010 is an unhappy number.[7][8]
- 10010 is abundant.[9]
- Its prime factorization is 21 × 51 × 71 × 111 × 131.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 100 ↑ 2 | ||
Scientific notation | 1.001 x 104 | 1.002 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 100 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {100,2} | ||
Fast-growing hierarchy | f2(9) | f2(10) | |
Hardy hierarchy | Hω(5005) | Hω(5005) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0004 | ||
Hyper-E notation (non-10 base) | \(E[100]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 100{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[100] | (0)[101] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5004)\) | \(s(1)(\lambda x . x+1)(5005)\) |
Sources[]
- ↑ Pointless Googolplex Stuffs - DLMAN Part 1 (retrieved 9 November 2024)
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is Unoo-myrol composite?
- ↑ Wolfram Alpha Unoo-myrol's factors
- ↑ OEIS A005117 - Squarefree numbers
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers