DEAN1[]
definition of DEAN1[]
the # only contain numbers and commas unless specified that it is the remaining part of the array
the variables are non-negative integers
basically linear arrays with a different bracket[]
rule A1 [a,1,#]=a where # is the remaining part of the array
rule A2 [#]=[#,1]
rule A3 [a,b]=ab
rule A4 [a,b,c,#]=[a,[a,b-1,c,#],c-1,#] where # is the remaining part of the array
rule A5 [a,b,1,1,...,1,1,1,c,#2]=[a,a,a,a,...,a,a,[a,b-1,1,1,...,1,1,1,c,#2],c-1,#2] where #2 is the remaining part of the array
merging (my analogue of dimensional arrays)[]
rule B1 [a,b(1)]=[a,a,...,a,a] with b a's
rule B2a [#(f)]=[#,1(f)]
rule B2b [#(f)d1(g1)d2(g2)...dn(gn)]=[#,1(f)d1(g1)d2(g2)...dn(gn)]
rule B3a [a,b,(f+1)]=[a,a(f)a(f)...a(f)a(f)] with b a(f)'s
rule B3b [a,b,(f+1)d1(g1)d2(g2)...dn(gn)]=[a,a(f)a(f)...a(f)a(f)d1(g1)d2(g2)...dn(gn)] with b a(f)'s
rule B4a [a,b(1)c(f)]=[a,b,b,...,b,b(f)] with c b's
rule B4b [a,b(1)c(f)d1(g1)d2(g2)...dn(gn)]=[a,b,b,...,b,b(f)d1(g1)d2(g2)...dn(gn)] with c b's
a,#(f) would become a,<#>,f,X
a,#3(d)b(f) would become a,<b,<#3>,d,X>,f,X where #3 is the remaining part of the array
"structure of" operation[]
for any structure on the right side of the "structure of" operator below N^^N or , N and are interchangeable
let % represent the remaining part of the structure
let a\b=[a,b(1)]
a\N^b=[a,a(b)]
a\N^c1+N^c2+...+N^cn-1+N^cn=[a,a(cn)a(cn-1)...a(c2)a(c1)]
a\=[a,2(0,2)]
a\=[a,b(1)a(0,2)] for any b>0
a\N^(N+b)=[a,a(b,2)]
a\N^(N*b+c+1)=[a,a(c+1,b+1)]
a\N^(Nb)=[a,2(0,b+1)]
a\%+N^(%+(N^b)*a)=a\%+N^(%+N^(b+1))
a\%+N^(%+c)*a=a\%+N^(%+c+1)
a\%+N^(%+N^(...(%+(N^b)*a))...))=a\%+N^(%+N^(...(%+(N^b+1)))...))
if a\S=[a,a#] for all a, then a\S+1=[a,a,a#] where # is the remaining part of the array
if a\S=[a,2(#)#] for all a, then a\S+1=[a,a(#)#] where # are the remaining parts of the array
if a\%1=[a,b#1] and a\%2=[a,a#2] for all a, then a\%2+%1=[a,b#1a#2]
nesting (my analogue of bower's tetrational arrays?)[]
a\N^N^b=[a,2(0,1,1,...,1,1,2)] with b-1 1's
a\N^(c*N^b)=[a,2(0,1,1,...,1,1,c+1)] with b-1 1's
a\N^(dnN^n+1+dn-1N^(n-1)+...+d1N+d0)=[a,a(d0+1,d1+1,...,dn-1,dn)]
a\N^(dnN^n+...+d2N^(2)+d1N)=[a,2(0,d1+1,...,dn-1,dn)]
if a\N^%=[a,2(#)] for all a, then a\N^N^N^%=[a,2(a(#))] where # is the remaining part of the array
if a\N^%=[a,a(#)] for all a, then a\N^N^N^%=[a,a(a(#))] where # is the remaining part of the array
[a,b+1(0,n+2)]=a\N^(N*(n)+[a,b(0,n+2)])
if a\N^%=[a,2(a(#1)#2)] for all a, then [a,b+1(a(#1)#2)]=a\N^(%-N+[a,b(a(#1)#2)])
if a\N^%=[a,b(#)], then a\N^N^N^%=[a,b(a(#))]
[a,b(a,c+2,#(#)#)]=[a,b-1(a,c+2,#(#)#)a(a,c+1,#(#)#)]
[a,b(c,0(#)#)]=[a,b(c(#)#)]
if a\N^%=[a,a(a(#)#)], then a\N^(%+dnN^n+dn-1N^(N-1)+...+d1N+d0)=[a,a(a,d0+1,d1+1,...,dn-1,dn(#)#)]
if a\N^%=[a,a(a(#)#)], then a\N^(%+dnN^n+dn-1N^(N-1)+...+d1N)=[a,2(a,0,d1+1,...,dn-1,dn(#)#)]
creating more space (abandoned)[]
a\=a\N^^a
a\=a\*(N^)^^(a-1)
a\=a\, other than that, if a\%1=a\%2 then a\=a\
if a\%=[a,b(#)] and % is not a finite variable, then a\=[a,b(0;#)]
a\=[a,a(0;b+1)]
a\N^^b=[a,b(0;1)]
if a\N^(%)=[a,b(#)] and %>N, then a\+N^(%)=[a,b(#;b+1)] where # is the remaining part of the array
if a\%=[a,b(#1)] and %>N, then a\=[a,b(0;#1)] where #1 is the remaining part of the array
if a\%=[a,c(#1)], %>N and a\N^(%1)=[a,b(#)] and %1>N, then a\+N^(%1)=[a,b(#;#1)]