n ! = ∏ i = 1 n i = n × ( ( n − 1 ) ! ) {\displaystyle n!=\prod _{i=1}^{n}i=n\times ((n-1)!)}
∼ f 2 {\displaystyle \sim f_{2}}
n S = ∏ i = 1 n i ! {\displaystyle nS=\prod _{i=1}^{n}i!}
n § = n ! ↑↑ n ! {\displaystyle n\S =n!\uparrow \uparrow n!}
∼ f 3 {\displaystyle \sim f_{3}}
n ! m = ( n ! m − 1 ) ! {\displaystyle n!_{m}=(n!_{m-1})!}
n ! 1 = n ! {\displaystyle n!_{1}=n!}
n $ = n ! ( n − 1 ) $ {\displaystyle n\$=n!_{(n-1)\$}}
1 $ = 1 {\displaystyle 1\$=1}
∼ f 4 {\displaystyle \sim f_{4}}
Weak Superfactorial is the same as this but replace the first rule with n ! m = ( n ! m − 1 ) ⋅ ( ( n − 1 ) ! m ) {\displaystyle n!_{m}=(n!_{m-1})\cdot ((n-1)!_{m})}
Weak superfactorial is ∼ f 3 {\displaystyle \sim f_{3}}
n H = ∏ i = 1 n i i {\displaystyle nH=\prod _{i=1}^{n}i^{i}}
1 Λ = 1 {\displaystyle 1\Lambda =1}
n Λ = n ! × ( ( n − 1 ) ! ) × ( ( n − 1 ) Λ ) {\displaystyle n\Lambda =n!\times ((n-1)!)\times ((n-1)\Lambda )}
WIP