We know the weak tree function has growth rate \(\vartheta(\Omega^\omega)\) in FGH or HH. However, to find a good bound of TREE(3), it's not enough that we just know tree(n) is comparable to \(H_{\vartheta(\Omega^\omega)}(n)\). We should know how it works. Here I found some results about tree function.
- Sequences whose length comparable to \(H_{\vartheta(\Omega^\omega)}(n)\) (maybe not the winning sequences)
- A better bound for growth rate of TREE(n)
- A sequence of TREE(3) and a bound
We need a definition here for the second question.
tree(n)[]
Sequences started with (()()()...()()) can have length comparable to \(H_{\vartheta(\Omega^\omega)}(n)\). Now vertices have at most n children. Then it'll reduce to "all vertices have at most n-1 children", then "all vertices have at most n-2 children". Finally become a binary tree (but not ordered). It's at \(\varepsilon_0\) level (in HH).
If we get (()()) and at most n vertices, the next tree is ((...(())...)) with n+1 vertices. At the end we get () and at most 2n+1 vertices, at the same time \(H_{\omega}(n)=2n\), so we call (()()) has level \(\omega\).
More comparisons:
tree | level |
---|---|
(()()) | \(\omega\) |
((()())) | \(\omega+1\) |
(((()()))) | \(\omega+2\) |
((())()) | \(\omega2\) |
(((()))()) | \(\omega3\) |
((()())()) | \(\omega^2\) |
(((()())())) | \(\omega^2+1\) |
(((()()))()) | \(\omega^2+\omega\) |
(((())())()) | \(\omega^22\) |
((((()))())()) | \(\omega^23\) |
(((()())())()) | \(\omega^3\) |
((((()())())())()) | \(\omega^4\) |
((())(())) | \(\omega^\omega\) |
(((())(()))) | \(\omega^\omega+1\) |
(((())(()))()) | \(\omega^\omega+\omega\) |
((((())(())))()) | \(\omega^\omega+\omega2\) |
((((())(()))())()) | \(\omega^\omega+\omega^2\) |
(((()))(())) | \(\omega^\omega2\) |
((((())))(())) | \(\omega^\omega3\) |
((()())(())) | \(\omega^{\omega+1}\) |
(((()()))(())) | \(\omega^{\omega+1}+\omega^\omega\) |
(((())())(())) | \(\omega^{\omega+1}2\) |
(((()())())(())) | \(\omega^{\omega+2}\) |
((((()())())())(())) | \(\omega^{\omega+3}\) |
(((())(()))(())) | \(\omega^{\omega2}\) |
((((())(())))(())) | \(\omega^{\omega2}+\omega^\omega\) |
((((()))(()))(())) | \(\omega^{\omega2}2\) |
((((())(()))(()))(())) | \(\omega^{\omega3}\) |
(((()))((()))) | \(\omega^{\omega^2}\) |
((((())))((()))) | \(\omega^{\omega^2}2\) |
(((()()))((()))) | \(\omega^{\omega^2+1}\) |
(((())(()))((()))) | \(\omega^{\omega^2+\omega}\) |
((((()))((())))((()))) | \(\omega^{\omega^22}\) |
((((())))(((())))) | \(\omega^{\omega^3}\) |
((()())(()())) | \(\omega^{\omega^\omega}\) |
(((()()))(()())) | \(\omega^{\omega^\omega}2\) |
(((())())(()())) | \(\omega^{\omega^\omega+1}\) |
(((())(()))(()())) | \(\omega^{\omega^\omega+\omega}\) |
(((()())(()()))(()())) | \(\omega^{\omega^\omega2}\) |
(((()()))((()()))) | \(\omega^{\omega^{\omega+1}}\) |
((((()())))(((()())))) | \(\omega^{\omega^{\omega+2}}\) |
(((())())((())())) | \(\omega^{\omega^{\omega2}}\) |
((((()))())(((()))())) | \(\omega^{\omega^{\omega3}}\) |
(((()())())((()())())) | \(\omega^{\omega^{\omega^2}}\) |
((((()())()))(((()())()))) | \(\omega^{\omega^{\omega^2+1}}\) |
((((()()))())(((()()))())) | \(\omega^{\omega^{\omega^2+\omega}}\) |
((((())())())(((())())())) | \(\omega^{\omega^{\omega^22}}\) |
((((()())())())(((()())())())) | \(\omega^{\omega^{\omega^3}}\) |
(((())(()))((())(()))) | \(\omega^{\omega^{\omega^\omega}}\) |
((((()))(()))(((()))(()))) | \(\omega^{\omega^{\omega^\omega2}}\) |
((((())(()))(()))(((())(()))(()))) | \(\omega^{\omega^{\omega^{\omega2}}}\) |
((((()))((())))(((()))((())))) | \(\omega^{\omega^{\omega^{\omega^2}}}\) |
(((((())))(((()))))((((())))(((()))))) | \(\omega^{\omega^{\omega^{\omega^3}}}\) |
(((()())(()()))((()())(()()))) | \(\omega^{\omega^{\omega^{\omega^\omega}}}\) |
((((())(()))((())(())))(((())(()))((())(())))) | \(\omega^{\omega^{\omega^{\omega^{\omega^\omega}}}}\) |
((((()())(()()))((()())(()())))(((()())(()()))((()())(()())))) | \(\omega^{\omega^{\omega^{\omega^{\omega^{\omega^\omega}}}}}\) |
Then, the first tree that has 3-children vertices is (()()()), which has level \(\varepsilon_0\). From \(\varepsilon_0\) to \(\varepsilon_1\) the (()()()) has no changes.
tree | level |
---|---|
(()()()) | \(\varepsilon_0\) |
((()()())) | \(\varepsilon_0+1\) |
((()()())()) | \(\varepsilon_0+\omega\) |
((()()())(()())) | \(\varepsilon_0+\omega^{\omega^\omega}\) |
((()()())(()()())) | \(\varepsilon_02\) |
(((()()()))(()()())) | \(\varepsilon_03\) |
(((()()())())(()()())) | \(\varepsilon_0\omega=\omega^{\varepsilon_0+1}\) |
((((()()())()))(()()())) | \(\omega^{\varepsilon_0+1}+\varepsilon_0\) |
((((()()()))())(()()())) | \(\omega^{\varepsilon_0+1}2\) |
((((()()())())())(()()())) | \(\omega^{\varepsilon_0+2}\) |
(((()()())(()))(()()())) | \(\omega^{\varepsilon_0+\omega}\) |
(((()()())((())))(()()())) | \(\omega^{\varepsilon_0+\omega^2}\) |
(((()()())(()()))(()()())) | \(\omega^{\varepsilon_0+\omega^\omega}\) |
(((()()())(()()()))(()()())) | \(\omega^{\varepsilon_02}\) |
((((()()())(()()())))(()()())) | \(\omega^{\varepsilon_02}+\varepsilon_0\) |
((((()()()))(()()()))(()()())) | \(\omega^{\varepsilon_02}2\) |
((((()()())())(()()()))(()()())) | \(\omega^{\varepsilon_02+1}\) |
((((()()())(()()()))(()()()))(()()())) | \(\omega^{\varepsilon_03}\) |
(((((()()()))(()()()))(()()()))(()()())) | \(\omega^{\varepsilon_03}2\) |
(((((()()())(()()()))(()()()))(()()()))(()()())) | \(\omega^{\varepsilon_04}\) |
(((()()()))((()()()))) | \(\omega^{\omega^{\varepsilon_0+1}}\) |
((((()()())))((()()()))) | \(\omega^{\omega^{\varepsilon_0+1}}2\) |
(((()()())(()()()))((()()()))) | \(\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0}\) |
((((()()())(()()()))(()()()))((()()()))) | \(\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0}2\) |
((((()()()))((()()())))((()()()))) | \(\omega^{\omega^{\varepsilon_0+1}2}\) |
(((((()()()))((()()())))((()()())))((()()()))) | \(\omega^{\omega^{\varepsilon_0+1}3}\) |
((((()()())))(((()()())))) | \(\omega^{\omega^{\varepsilon_0+2}}\) |
(((()()())())((()()())())) | \(\omega^{\omega^{\varepsilon_0+\omega}}\) |
((((()()())()))(((()()())()))) | \(\omega^{\omega^{\varepsilon_0+\omega+1}}\) |
((((()()()))())(((()()()))())) | \(\omega^{\omega^{\varepsilon_0+\omega2}}\) |
(((()()())(()()))((()()())(()()))) | \(\omega^{\omega^{\varepsilon_0+\omega^{\omega^\omega}}}\) |
(((()()())(()()()))((()()())(()()()))) | \(\omega^{\omega^{\varepsilon_02}}\) |
((((()()())(()()())))(((()()())(()()())))) | \(\omega^{\omega^{\varepsilon_02+1}}\) |
((((()()()))(()()()))(((()()()))(()()()))) | \(\omega^{\omega^{\varepsilon_03}}\) |
((((()()())(()()()))(()()()))(((()()())(()()()))(()()()))) | \(\omega^{\omega^{\omega^{\varepsilon_02}}}\) |
((((()()())(()()()))((()()())(()()())))(((()()())(()()()))((()()())(()()())))) | \(\omega^{\omega^{\omega^{\omega^{\varepsilon_02}}}}\) |
Next ((())()()) has level \(\varepsilon_1\).
tree | level |
---|---|
((())()()) | \(\varepsilon_1\) |
(((()))()()) | \(\varepsilon_2\) |
((()())()()) | \(\varepsilon_\omega\) |
(((()())(()()))()()) | \(\varepsilon_{\omega^{\omega^\omega}}\) |
((()()())()()) | \(\varepsilon_{\varepsilon_0}\) |
(((()()())(()()()))()()) | \(\varepsilon_{\varepsilon_02}\) |
(((())()())()()) | \(\varepsilon_{\varepsilon_1}\) |
(((()()())()())()()) | \(\varepsilon_{\varepsilon_{\varepsilon_0}}\) |
((())(())()) | \(\zeta_0\) |
(((())(())())()()) | \(\varepsilon_{\zeta_0+1}\) |
((((())(())()))()()) | \(\varepsilon_{\zeta_0+2}\) |
((((())(())())((())(())()))()()) | \(\varepsilon_{\zeta_02}\) |
((((())(())())()())()()) | \(\varepsilon_{\varepsilon_{\zeta_0+1}}\) |
(((()))(())()) | \(\zeta_1\) |
(((())(())())(())()) | \(\zeta_{\zeta_0}\) |
(((()))((()))()) | \(\varphi(3,0)\) |
((()())(()())()) | \(\varphi(\omega,0)\) |
((()()())(()()())()) | \(\varphi(\varepsilon_0,0)\) |
(((()()())(()()())())((()()())(()()())())()) | \(\varphi(\varphi(\varepsilon_0,0),0)\) |
((())(())(())) | \(\Gamma_0\) |
(((())(())(()))()()) | \(\varepsilon_{\Gamma_0+1}\) |
((((())(())(())))()()) | \(\varepsilon_{\Gamma_0+2}\) |
((((())(())(()))()())()()) | \(\varepsilon_{\varepsilon_{\Gamma_0+1}}\) |
(((())(())(()))(())()) | \(\zeta_{\Gamma_0+1}\) |
(((())(())(()))(()()())()) | \(\varphi(\varepsilon_0,\Gamma_0+1)\) |
(((())(())(()))((())(())(()))()) | \(\varphi(\Gamma_0,1)\) |
((((())(())(()))((())(())(()))())(()()())()) | \(\varphi(\varepsilon_0,\varphi(\Gamma_0,1)+1)\) |
((((())(())(())))((())(())(()))()) | \(\varphi(\Gamma_0,2)\) |
((((())(())(()))((())(())(())))((())(())(()))()) | \(\varphi(\Gamma_0,\Gamma_0)\) |
((((())(())(()))()())((())(())(()))()) | \(\varphi(\Gamma_0,\varepsilon_{\Gamma_0+1})\) |
((((())(())(()))((())(())(()))())((())(())(()))()) | \(\varphi(\Gamma_0,\varphi(\Gamma_0,1))\) |
((((())(())(())))(((())(())(())))()) | \(\varphi(\Gamma_0+1,0)\) |
((((())(())(()))()())(((())(())(()))()())()) | \(\varphi(\varepsilon_{\Gamma_0+1},0)\) |
((((())(())(()))((())(())(()))())(((())(())(()))((())(())(()))())()) | \(\varphi(\varphi(\Gamma_0,1),0)\) |
(((()))(())(())) | \(\Gamma_1\) |
(((())(())(()))(())(())) | \(\Gamma_{\Gamma_0}\) |
(((()))((()))(())) | \(\varphi(1,1,0)\) |
(((())(())(()))((())(())(()))(())) | \(\varphi(1,\Gamma_0,0)\) |
(((()))((()))((()))) | \(\varphi(2,0,0)\) |
((()()())(()()())(()()())) | \(\varphi(\varepsilon_0,0,0)\) |
(((()()())(()()())(()()()))((()()())(()()())(()()()))((()()())(()()())(()()()))) | \(\varphi(\varphi(\varepsilon_0,0,0),0,0)\) |
(()()()()) | \(\varphi(1,0,0,0)\) |
((()()()())()()) | \(\varepsilon_{\varphi(1,0,0,0)+1}\) |
((()()()())(())()) | \(\zeta_{\varphi(1,0,0,0)+1}\) |
((()()()())(()()()())()) | \(\varphi(\varphi(1,0,0,0),1)\) |
((()()()())(())(())) | \(\Gamma_{\varphi(1,0,0,0)+1}\) |
((()()()())(()()()())(()()()())) | \(\varphi(\varphi(1,0,0,0),0,1)\) |
((())()()()) | \(\varphi(1,0,0,1)\) |
((())(())()()) | \(\varphi(1,0,1,0)\) |
((())(())(())()) | \(\varphi(1,1,0,0)\) |
((())(())(())(())) | \(\varphi(2,0,0,0)\) |
((()()()())(()()()())(()()()())(()()()())) | \(\varphi(\varphi(1,0,0,0),0,0,0)\) |
(()()()()()) | \(\varphi(1,0,0,0,0)\) |
(()()()()()()) | \(\varphi(1,0,0,0,0,0)\) |
So that is a way up to SVO. Start with (()()...()()) then reduce them from bottom to top in those tables.
TREE(m,n) and TREE(n)[]
The weak tree function tree(n)=TREE(1,n). But what about TREE(2,n), TREE(3,n) and more? Here I found a way to reduce them. Use (), [] and {} for different color of vertices.
A [] can reduce to (()()...()()) so it has level SVO. And more,
tree | level |
---|---|
[] | \(\vartheta(\Omega^\omega)\) |
([]) | \(\vartheta(\Omega^\omega)+1\) |
(([])) | \(\vartheta(\Omega^\omega)+2\) |
([]()) | \(\vartheta(\Omega^\omega)+\omega\) |
([](()()()())) | \(\vartheta(\Omega^\omega)+\varphi(1,0,0,0)\) |
([][]) | \(\vartheta(\Omega^\omega)2\) |
(([][])(()()())) | \(\vartheta(\Omega^\omega)2+\varepsilon_0\) |
(([])[]) | \(\vartheta(\Omega^\omega)3\) |
(([]())[]) | \(\omega^{\vartheta(\Omega^\omega)+1}\) |
(([][])[]) | \(\omega^{\vartheta(\Omega^\omega)2}\) |
(([])([])) | \(\omega^{\omega^{\vartheta(\Omega^\omega)+1}}\) |
(([][])([][])) | \(\omega^{\omega^{\vartheta(\Omega^\omega)2}}\) |
([]()()) | \(\varepsilon_{\vartheta(\Omega^\omega)+1}\) |
([](())()) | \(\zeta_{\vartheta(\Omega^\omega)+1}\) |
([][]()) | \(\varphi(\vartheta(\Omega^\omega),1)\) |
([](())(())) | \(\Gamma_{\vartheta(\Omega^\omega)+1}\) |
([][][]) | \(\varphi(\vartheta(\Omega^\omega),0,1)\) |
([]()()()) | \(\varphi(1,0,0,\vartheta(\Omega^\omega)+1)\) |
([][][][]) | \(\varphi(\vartheta(\Omega^\omega),0,0,1)\) |
([][][][][]) | \(\varphi(\vartheta(\Omega^\omega),0,0,0,1)\) |
[()] | \(\vartheta(\Omega^\omega+1)\) |
[(())] | \(\vartheta(\Omega^\omega+2)\) |
[(()()())] | \(\vartheta(\Omega^\omega+\varepsilon_0)\) |
[[]] | \(\vartheta(\Omega^\omega+\vartheta(\Omega^\omega))\) |
[([])] | \(\vartheta(\Omega^\omega+\vartheta(\Omega^\omega)+1)\) |
[([][][])] | \(\vartheta(\Omega^\omega+\varphi(\vartheta(\Omega^\omega),0,1))\) |
[[()]] | \(\vartheta(\Omega^\omega+\vartheta(\Omega^\omega+1))\) |
[[[]]] | \(\vartheta(\Omega^\omega+\vartheta(\Omega^\omega+\vartheta(\Omega^\omega)))\) |
[()()] | \(\vartheta(\Omega^\omega+\Omega)\) |
[[()()]] | \(\vartheta(\Omega^\omega+\vartheta(\Omega^\omega+\Omega))\) |
[([()()][()()][()()])] | \(\vartheta(\Omega^\omega+\varepsilon_{\vartheta(\Omega^\omega+\Omega)+1})\) |
[[[()()]]] | \(\vartheta(\Omega^\omega+\vartheta(\Omega^\omega+\vartheta(\Omega^\omega+\Omega)))\) |
[(())()] | \(\vartheta(\Omega^\omega+\Omega+1)\) |
[[]()] | \(\vartheta(\Omega^\omega+\Omega+\vartheta(\Omega^\omega))\) |
[[()()]()] | \(\vartheta(\Omega^\omega+\Omega+\vartheta(\Omega^\omega+\Omega))\) |
[[[()()]()]()] | \(\vartheta(\Omega^\omega+\Omega+\vartheta(\Omega^\omega+\Omega+\vartheta(\Omega^\omega+\Omega)))\) |
[(())(())] | \(\vartheta(\Omega^\omega+\Omega2)\) |
[(()()())(()()())] | \(\vartheta(\Omega^\omega+\Omega\varepsilon_0)\) |
[[][]] | \(\vartheta(\Omega^\omega+\Omega\vartheta(\Omega^\omega))\) |
[[[][]][[][]]] | \(\vartheta(\Omega^\omega+\Omega\vartheta(\Omega^\omega+\Omega\vartheta(\Omega^\omega)))\) |
[()()()] | \(\vartheta(\Omega^\omega+\Omega^2)\) |
[(())()()] | \(\vartheta(\Omega^\omega+\Omega^2+1)\) |
[(())(())()] | \(\vartheta(\Omega^\omega+\Omega^2+\Omega)\) |
[(())(())(())] | \(\vartheta(\Omega^\omega+\Omega^22)\) |
[[][][]] | \(\vartheta(\Omega^\omega+\Omega^2\vartheta(\Omega^\omega))\) |
[()()()()] | \(\vartheta(\Omega^\omega+\Omega^3)\) |
[[][][][]] | \(\vartheta(\Omega^\omega+\Omega^3\vartheta(\Omega^\omega))\) |
[[][][][][]] | \(\vartheta(\Omega^\omega+\Omega^4\vartheta(\Omega^\omega))\) |
{} | \(\vartheta(\Omega^\omega2)\) |
So I get some bound for TREE(m,n) functions:
Growth rate of TREE(2,n)\(\geq\vartheta(\Omega^\omega2)\)
Growth rate of TREE(3,n)\(\geq\vartheta(\Omega^\omega3)\)
and so on.
TREE(n) go across all the TREE(m,n) for constant m, so growth rate of TREE(n)\(\geq\vartheta(\Omega^\omega\omega)\).
However, those sequences are not the winning sequence, so I've no idea about the upper bound of TREE(n).
Update: This paper provided upper bounds for the order type of labeled trees, including TREE sequences. We got \(\text{TREE}(n)\approx f_{\vartheta(\Omega^\omega\omega)}(n)\) from that.
TREE(3)[]
While evaluating TREE(3) (not TREE(n)), it's important to have a good beginning. After some comparisons, I found that sequence as follow. Some parts are not the same as the order in the tables in part 1 and 2.
(And thanks to Deedlit's idea, I get a new version.)
- {}
- [[]]
- [()()]
- [(()())] - Notice that [()()] isn't a minor of [(()())], and this can improve a lot.
- [(((())))]
- (([((()))]))
- ([((()))][][])
- ([((()))][]()()) - Not the same as in the table.
- ([((()))]()()()())
- ([((()))](())(())())
- ([((()))](()()())()()) - Then reduce the (()()()) only. This will take tree(3) steps.
tree(3)+10. ([((()))]()()())
tree(3)+11. ([((()))][((()))](()tree(3)+1)) - Here the superscript means there're tree(3)+1 ()'s as children in a (()()...()()).
tree(tree(3)+1)+tree(3)+10. ([((()))][((()))]())
tree(tree(3)+1)+tree(3)+11. ([((()))][](()tree(tree(3)+1)+tree(3)+4))
tree(tree(3)+1)+tree(3)+12. ([((()))][]((())(())()tree(tree(3)+1)+tree(3)+1))
tree(tree(3)+1)+tree(3)+13. ([((()))][]((()()())()tree(tree(3)+1)+tree(3)+2))
tree(tree(3)+1)+tree(3)+14. ([((()))][](((())(()))()tree(tree(3)+1)+tree(3)+2))
tree(tree(3)+1)+tree(3)+15. ([((()))][]((((())())())()tree(tree(3)+1)+tree(3)+2))
tree(tree(3)+1)+tree(3)+16. ([((()))][](((((()())))())()tree(tree(3)+1)+tree(3)+2))
tree(tree(3)+1)+tree(3)+17. ([((()))][]((((((()()))())))()tree(tree(3)+1)+tree(3)+2))
tree(tree(3)+1)+tree(3)+18. ([((()))][]((((((()()))()))()tree(tree(3)+1)+tree(3)+2)()))
tree(tree(3)+1)+tree(3)+19. ([((()))][]((((((((()()))()))()tree(tree(3)+1)+tree(3)+2)))))
tree(tree(3)+1)+tree(3)+20. ([((()))][(())](((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
tree(tree(3)+1)+tree(3)+21. ([((()))](([()]))(((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
tree(tree(3)+1)+tree(3)+22. ([((()))]([()][()])(((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
tree(tree(3)+1)+tree(3)+23. ([((()))]([()][][][])(((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
tree(tree(3)+1)+tree(3)+24. ([((()))]([()][][]()())(((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
tree(tree(3)+1)+tree(3)+25. ([((()))]([()][]()()()())(((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
tree(tree(3)+1)+tree(3)+26. ([((()))]([()]()()()()()())(((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
tree(tree(3)+1)+tree(3)+27. ([((()))]([()](())(())()()())(((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
tree(tree(3)+1)+tree(3)+28. ([((()))]([()](()()())()()()())(((((((()()))()))()tree(tree(3)+1)+tree(3)+2)))) - Again, the (()()()) takes tree(3) steps.
tree(tree(3)+1)+2tree(3)+27. ([((()))]([()]()()()()())(((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
tree(tree(3)+1)+2tree(3)+28. ([((()))]([()][](()tree(3)+4)()())(((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
tree(tree(3)+1)+2tree(3)+29. ([((()))]([()][]((())(())()tree(3)+1)()())(((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
tree(tree(3)+1)+2tree(3)+30. ([((()))]([()][]((()()())()tree(3)+2)()())(((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
tree(tree(3)+1)+2tree(3)+31. ([((()))]([()][](((())(()))()tree(3)+2)()())(((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
tree(tree(3)+1)+2tree(3)+32. ([((()))]([()][]((((())())())()tree(3)+2)()())(((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
tree(tree(3)+1)+2tree(3)+33. ([((()))]([()][](((((()())))())()tree(3)+2)()())(((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
tree(tree(3)+1)+2tree(3)+34. ([((()))]([()][]((((((()()))())))()tree(3)+2)()())(((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
tree(tree(3)+1)+2tree(3)+35. ([((()))]([()][]((((((()()))()))()tree(3)+2)())()())(((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
tree(tree(3)+1)+2tree(3)+36. ([((()))]([()][]((((((((()()))()))()tree(3)+2))))()())(((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
tree(tree(3)+1)+2tree(3)+37. ([((()))]([()]([][])(((((((()()))()))()tree(3)+2)))()())(((((((()()))()))()tree(tree(3)+1)+tree(3)+2))))
Then, changes happen on the subtree ([][]), and this part will be
tree(tree(3)+1)+2tree(3)+38. ([]()())
tree(tree(3)+1)+2tree(3)+39. ([](()()))
tree(tree(3)+1)+2tree(3)+40. ([](((()))))
tree(tree(3)+1)+2tree(3)+41. (([]())((())))
tree(tree(3)+1)+2tree(3)+42. (((([])))((())))
tree(tree(3)+1)+2tree(3)+43. (((([]))((())))())
tree(tree(3)+1)+2tree(3)+44. (((((([]))((()))))))
tree(tree(3)+1)+2tree(3)+45. ((((([]))((())))))
tree(tree(3)+1)+2tree(3)+46. (((([]))((()))))
tree(tree(3)+1)+2tree(3)+47. ((([]))((())))
tree(tree(3)+1)+2tree(3)+48. ((((([])((())))())(()))(()))
tree(tree(3)+1)+2tree(3)+49. ((((((([])((()))))))(()))(()))
tree(tree(3)+1)+2tree(3)+50. ((((((([])((())))))(()))())(()))
tree(tree(3)+1)+2tree(3)+51. ((((((((([])((())))))(())))))(()))
tree(tree(3)+1)+2tree(3)+52. ((((((((([])((())))))(()))))(()))())
tree(tree(3)+1)+2tree(3)+53. ((((((((((([])((())))))(()))))(())))))
tree(tree(3)+1)+2tree(3)+54. (((((((((([])((())))))(()))))(()))))
tree(tree(3)+1)+2tree(3)+55. ((((((((([])((())))))(()))))(())))
tree(tree(3)+1)+2tree(3)+56. (((((((([])((())))))(()))))(()))
tree(tree(3)+1)+2tree(3)+57. ((((((((((([])((())))))(())))(()))())())())())
tree(tree(3)+1)+2tree(3)+58. ((((((((((((([])((())))))(())))(())))))())())())
tree(tree(3)+1)+2tree(3)+59. (((((((((((((([])((())))))(())))(()))))())))())())
tree(tree(3)+1)+2tree(3)+60. ((((((((((((((([])((())))))(())))(()))))()))())))())
tree(tree(3)+1)+2tree(3)+61. (((((((((((((((([])((())))))(())))(()))))()))()))())))
tree(tree(3)+1)+2tree(3)+62. ((((((((((((((([])((())))))(())))(()))))()))()))()))
tree(tree(3)+1)+2tree(3)+63. (((((((((((((([])((())))))(())))(()))))()))()))())
tree(tree(3)+1)+2tree(3)+64. ((((((((((((((((((([])((())))))(())))(()))))()))())())))))))
tree(tree(3)+1)+2tree(3)+70. ((((((((((((([])((())))))(())))(()))))()))())())
tree(tree(3)+1)+2tree(3)+71. (((((((((((((((((((((((((([])((())))))(())))(()))))())())))))))))))))))())
tree(tree(3)+1)+2tree(3)+72. ((((((((((((((((((((((((((([])((())))))(())))(()))))())()))))))))))))))())))
tree(tree(3)+1)+2tree(3)+74. ((((((((((((((((((((((((([])((())))))(())))(()))))())()))))))))))))))())
tree(tree(3)+1)+2tree(3)+75. (((((((((((((((((((((((((((((([])((())))))(())))(()))))())())))))))))))))())))))))
tree(tree(3)+1)+2tree(3)+81. (((((((((((((((((((((((([])((())))))(())))(()))))())())))))))))))))())
tree(tree(3)+1)+2tree(3)+96. ((((((((((((((((((((((([])((())))))(())))(()))))())()))))))))))))())
tree(tree(3)+1)+2tree(3)+127. (((((((((((((((((((((([])((())))))(())))(()))))())())))))))))))())
tree(tree(3)+1)+2tree(3)+65589. (((((((((((([])((())))))(())))(()))))())())())
Now I start using Hardy hierarchy. Notice that it need one step to "expand" so in that hierarchy it's actually \(H_\alpha(n)=H_{\alpha[n]}(n)+1>H_{\alpha[n]}(n)\). So HH is actually slightly smaller.
\(>tree(tree(3)+1)+H_{\omega^3}(65534)\). ((((((((((([])((())))))(())))(())))())())())
\(>tree(tree(3)+1)+H_{\omega^32}(65534)\). (((((((((([])((())))))(())))(()))())())())
\(>tree(tree(3)+1)+H_{\omega^33}(65534)\). ((((((([])((())))))(())))(()))
\(>tree(tree(3)+1)+H_{\omega^\omega+\omega^33}(65534)\). (((((([])((())))))(()))(()))
\(>tree(tree(3)+1)+H_{\omega^{\omega2}+\omega^\omega+\omega^33}(65534)\). ((((([])((()))))(()))(()))
\(>tree(tree(3)+1)+H_{\omega^{\omega2}2+\omega^\omega+\omega^33}(65534)\). (((([])((())))(()))(()))
\(>tree(tree(3)+1)+H_{\omega^{\omega2}3+\omega^\omega+\omega^33}(65534)\). (([])((())))
\(>tree(tree(3)+1)+H_{\omega^{\omega^2}+\omega^{\omega2}3+\omega^\omega+\omega^33}(65534)\). ([]((())))
\(>tree(tree(3)+1)+H_{\omega^{\omega^2}2+\omega^{\omega2}3+\omega^\omega+\omega^33}(65534)\). []
Now the whole tree becomes ([((()))]([()][](((((((()()))()))()tree(3)+2)))()())(((((((()()))()))()tree(tree(3)+1)+tree(3)+2)))). Then changes happen on the ([()][](((((((()()))()))()tree(3)+2)))()()). Notice that the subtree (((((((()()))()))()tree(3)+2))) has level \(\vartheta(\Omega^{tree(3)+2})\cdot(\omega^2+\omega+1)+2\), and once it decreases one vertix the [] will change into ([][]...[][]) with as many []'s as possible - at level \(\vartheta(\Omega^\omega+1)\). So
- \(>H_{\vartheta(\Omega^\omega+1)\vartheta(\Omega^{tree(3)+2})\cdot(\omega^2+\omega+1)+\vartheta(\Omega^\omega+1)2+\omega^{\omega^2}2+\omega^{\omega2}3+\omega^\omega+\omega^33}(65534)\). ([()][]()()())
Then it reduce to ([()][][](()()...())) with as many ()'s as possible - at level \(\vartheta(\Omega^\omega)\), so
- \(>H_{\vartheta(\Omega^\omega+1)^2\vartheta(\Omega^\omega)+\vartheta(\Omega^\omega+1)\vartheta(\Omega^{tree(3)+2})\cdot(\omega^2+\omega+1)+\vartheta(\Omega^\omega+1)2+\omega^{\omega^2}2+\omega^{\omega2}3+\omega^\omega+\omega^33}(65534)\). [()]
Now the whole tree becomes ([((()))][()](((((((()()))()))()tree(tree(3)+1)+tree(3)+2)))). Notice that the subtree (((((((()()))()))()tree(tree(3)+1)+tree(3)+2))) has level \(\vartheta(\Omega^{tree(tree(3)+1)+tree(3)+2})\cdot(\omega^2+\omega+1)+2\), and once it decreases one vertix the [()] will change into ([(())][][]...[][]) with as many []'s as possible - at level \(\vartheta(\Omega^\omega+3)\), so
\(>H_{\vartheta(\Omega^\omega+3)\vartheta(\Omega^{tree(tree(3)+1)+tree(3)+2})\cdot(\omega^2+\omega+1)+\vartheta(\Omega^\omega+3)2+\vartheta(\Omega^\omega+1)^2\vartheta(\Omega^\omega)+\vartheta(\Omega^\omega+1)\vartheta(\Omega^{tree(3)+2})\cdot(\omega^2+\omega+1)+\vartheta(\Omega^\omega+1)2+\omega^{\omega^2}2+\omega^{\omega2}3+\omega^\omega+\omega^33}(65534)\). ([((()))][()]())
At last the tree reduce to ([((()))][]()), ([((()))]()()), ([((()))]([(())][][][]...[][])), ([((()))]()), ([((()))]), [((()))], (). But those are only at level \(\vartheta(\Omega^\omega+3)2\), which is nothing comparing to \(\vartheta(\Omega^\omega+3)\vartheta(\Omega^{tree(tree(3)+1)+tree(3)+2})\cdot(\omega^2+\omega+1)\).
Finally, I get TREE(3)>\(H_{\vartheta(\Omega^\omega+3)\vartheta(\Omega^{tree(tree(3)+1)+tree(3)+2})\cdot(\omega^2+\omega+1)+\vartheta(\Omega^\omega+3)2+\vartheta(\Omega^\omega+1)^2\vartheta(\Omega^\omega)+\vartheta(\Omega^\omega+1)\vartheta(\Omega^{tree(3)+2})\cdot(\omega^2+\omega+1)+\vartheta(\Omega^\omega+1)2+\omega^{\omega^2}2+\omega^{\omega2}3+\omega^\omega+\omega^33}(65534)\), and a more simple but slightly weaker bound is TREE(3)>\(f_{\vartheta(\Omega^\omega+3)+\vartheta(\Omega^\omega)}(tree(tree(3)))\).
Who has a better idea?