Googology Wiki
Advertisement
Googology Wiki

Language defined in this other blog post.

WORK IN PROGRESS, SUBJECT TO CHANGE

Axioms for the ∈ relation:[]

Axiom of extensionality for non-link objects (changed to not imply that all members of are equal): ∀x∀y((x∈)(y∈)((∀z((z∈x)(z∈y)))x=y))

Axiom of regularity: ∀(∃()(¬∃()))

Axiom of pairing: ∀∃z∀y(y∈z(y=∨y=))

Axiom of union: ∀(())

Axioms for , , , , and relations (originally introduced by P進大好きbot in User blog:P進大好きbot/Rayo name of 65536#Wedge):[]

Axiom of Wedging: ∀x∀y∀z((x,y,z)(yz((y∈z∈)∈x))))

Axiom of Uniquely Wedging: ∀x∀y∀z((x,y,z)((x,y,z)(¬∃((z(x,y,))))))

Axiom of Restriction Of Uniquely Wedging: ∀x∀y∀z((x,y,z)(∈y(x,,z)))

Axiom of Restriction Of Having Surjective Wedge Relation: ∀x∀y∀z((x,y,z)¬∃(∈z¬(x,y,)))

Axiom of Surjection: ∀x∀y((xy)∃z((z,x,y)))

Axiom for the relation:[]

Axiom of Equal Cardinality: ∀x∀y((xy)(((xy)(yx))x=y))

Axiom for the relation:[]

Axiom of unordered pair: ∀x((x)∃y ∈x(∃z ∈x(yz(∃ ∈x(yz)))))

Axiom for the relation:[]

Axiom of one element from each set in unordered pair: ∀x∀y∀z((x,y,z)(x∈x(∈y∈x(∈y))))

Axiom for the relation:[]

Axiom of containing only unordered pairs: ∀x((x)∀y∈x(y))

Axiom for the relation:[]

Axiom of double containing all elements: ∀x∀y(xy∀z∈x(∃∈y(z∈)))

Axiom for the relation:[]

Axiom of map: ∀x∀y∀z((x,y,z)(xyyzx(∀∈x((,y,z)))yxzx))

Axioms for the relation:[]

Axiom Of Subsets: ∀x∀y(yx∀z(z∈yz∈x))

Axiom of the Power Set: ∀x∃y∀z(zxz∈y)

Axiom for the function:[]

Axioms of Union: ∀x∀y∀z((z∈(xy))((z∈x)(z∈y))

Axiom for the function:[]

Axiom of Intersection: ∀x∀y∀z((z∈(xy))((z∈x)(z∈y))

Axiom for the S function:[]

Axiom of Successor: ∀x∀y((y∈Sx)((x=y)(x∈y)))

Axioms for the 🔗 relation:[]

Axiom of link extensionality: ∀x∈∀y∈((∀z∈((x🔗z)(y🔗z)))x=y)

Axiom of Commutativity: ∀x∈∀y∈((x🔗y)(y🔗x))

Axiom of Separate Links: ∀x(∃y∈(∀z∈x((((¬(x=))(¬(y=z)))¬(y🔗z))))

Axiom of Link Existence to Alternate Set of Links:

🔗🔗

🔗

Axiom of emptiness: ∀x∈∀y(¬(y∈x))

Axiom of if sets can link: ∀x((¬(x∈))∀y(¬(x🔗y)))

Other axiom:[]

Axiom of infinity which contains no link: ∃(∃y∈(¬∃z(z∈y))(S)¬∃y∈(y∈))

Advertisement