Googology Wiki
Googology Wiki

1

Pika kid10’s Array Notation long analysis (Pika kid10)

  • 1 Pika_kid10’s Array Notation
  • 2 Basic Array Notation
  • 3 Nested Array Notation
  • 4 Linear Array Notation


made by Pika_kid10 with help from Solarzone

Copy/Paste bank for PC:

ω

ε

ζ

η

φ

Γ

ψ

Ω


{0} = 1{0}{0} = 2

{0}{0}{0} = 3

{0}{0}{0}{0} = 4

{0}{0}{0}{0}{0} = 5

{0}{1} = ω

{0}{1}{0} = ω+1

{0}{1}{0}{0} = ω+2

{0}{1}{0}{0}{0} = ω+3

{0}{1}{0}{0}{0}{0} = ω+4

{0}{1}{0}{1} = ω*2

{0}{1}{0}{1}{0} = ω*2+1

{0}{1}{0}{1}{0}{0} = ω*2+2

{0}{1}{0}{1}{0}{0}{0} = ω*2+3

{0}{1}{0}{1}{0}{1} = ω*3

{0}{1}{0}{1}{0}{1}{0} = ω*3+1

{0}{1}{0}{1}{0}{1}{0}{0} = ω*3+2

{0}{1}{0}{1}{0}{1}{0}{1} = ω*4

{0}{1}{0}{1}{0}{1}{0}{1}{0}{1} = ω*5

{0}{1}{1} = ω^2

{0}{1}{1}{0} = ω^2+1

{0}{1}{1}{0}{0} = ω^2+2

{0}{1}{1}{0}{0}{0} = ω^2+3

{0}{1}{1}{0}{1} = ω^2+ω

{0}{1}{1}{0}{1}{0} = ω^2+ω+1

{0}{1}{1}{0}{1}{0}{1} = ω^2+ω*2

{0}{1}{1}{0}{1}{…



Read Full Post
0

PlanetN9ne's naming scheme (PlanetN9ne)

dyad = X

dyadone = X+1

dyadtwo = X+2

tudyad = 2X

thredyad = 3X

fordyad = 4X

fivdyad = 5X

sixdyad = 6X

sevdyad = 7X

eidyad = 8X

nindyad = 9X

tendyad = 10X

square = X^2

squaredyad = X^2+X

squaredyadone = X^2+X+1

tusquare = 2X^2

cube = X^3

tes = X^4

pent = X^5

ax = X^6

hept = X^7

octo = X^8

enne = X^9

deker = X^10

tope = X^X

dyadtope = X^(X+1)

squaretope = X^(X+2)

distope = X^2X

tristope = X^3X

supersquare = X^X^2

dyadsupersquare = X^(X^2+1)

topesupersquare = X^(X^2+X)

disupersquare = X^(2*X^2)

supercube = X^X^3

trimentope = X^X^X

dyadtrimentope = X^(X^X+1)

distrimentope = X^(2*X^X)

supertopetrimentope = X^X^(X+1)

superdistrimentope = X^X^2X

trimensquare = X^X^X^2

quadramentope = X^X^X^X

supertopequadramentope = X^X^(X^X+1)

superdisquadramentope = X^X^(2*X^X)

trimentopequadramentope =…

Read Full Post
2

P() notation (unknown author)

A new thing I made


[$]:[a] = #[e($,a)]:[a]

e(m,a) = m-1 if m is integer

e(#0,a) = #

e(#[0],a) = #a

e(#&0,a) = #

e(%0 !/0[0] $#,a) = %[%[...%a !/0[0] e($,a)#...]e($,a)#]e($,a)#

e(%0&$#,a) = %a f(&,a) e($,a)#

e(b/#,a) = b-1/#

e(#[#m],a) = #[#m-1][#m-1]...[#m-1] if m is integer

e(#[$],a) = #[e($,a)]

f(!/0[0],a) = !

f(!/$[0],a) =

!/[%0 !/_$[0] $#][0] = !/[%/_([%/_(...[% a !/_$[0] e($,a)#]...)[0] a !/_$[0] e($,a)#])[0] a !/_$[0] e($,a)#][0]

f(!/$[$],a) = !/$[e($,a)]/$[e($,a)]/$[e($,a)]... if $[0] ≠ 0

f(!/$[$],a) = !/$[e($,a)] if $[0] = 0

f(!/$[%0 !/0[0] $#],a) = !/$[%[%[...%a !/0[0] e($,a)#...]e($,a)#]e($,a)#]

f(!/$[%0 !/$[0] $#],a) = !/$[%/e($,a)[%/e($,a)[...%a !/$[0] e($,a)#...]e($,a)#]e($,a)#]

f(!/$[%0 & $#],a) = !/$[%a f(&,a) e($,a)#]

/ is an abbreviation for…


Read Full Post
1

QUESTION MARK NOTATION v2 (Polymations)

After all this time, I’ve finally decided I’m going to try and remake QMN because the original seems ill-defined, and even if it isn’t, it’s probably way weaker than I expected. Also, the definitions will be written in text instead of equations, until there is a point that I need to use something like subscripts, superscripts, etc. V1: Question Marks Notation


Question mark notation is a notation made by me to express big numbers. It is also made to fix the problem in BEAF that {2,n,1,2} = 4 because 2{2{...}2}2 = 4. I want to make this notation so that an expression with {2,2} is 4 but an expression with {2,3} is way way larger. The special trait of this notation is that if you simplify it all the way down, the final result will simplify dow…


Read Full Post
0

a set within a set (NO EXPLANATION)

Read Full Post