Introduction [ ]
I'm pretty sure this siho guy's gonna find out the entire world does not revolve around him, his country, his belief, and stuff like that, whatever, idk.
—tat1101
Proto prestissimo I and II
Growth rate
\(f_{\epsilon_0}(n)
Alternate names
Bunny again notation
Harry notation
Harry's notation is a googologist's notation created by bunny again yesterday, for bunny again himself he is actually not active anywhere either on wiki googology or miraheze googology, but yesterday he seemed to have created a notation quite quickly, he said that he wanted to get to phi (w,0) but the analysis is still stuck at epsilon and has not increased,
the definition is very similar to my extended hyper e notation or obilique notation, until now obilique notation is still undergoing a naive extension called Prettisimo I-IV, until now I haven't developed it and I plan to replace it with a better one, so far I haven't gotten there yet to epsilon nought, but let's start my analysis
n
[
1
]
=
f
ω
{\displaystyle n[1]=f_{\omega }}
n
[
1
]
2
=
f
ω
+
1
{\displaystyle n[1]2=f_{\omega +1}}
n
[
1
]
3
=
f
ω
+
2
{\displaystyle n[1]3=f_{\omega +2}}
n
[
1
]
4
=
f
ω
+
3
{\displaystyle n[1]4=f_{\omega +3}}
n
[
1
]
[
1
]
=
f
ω
2
{\displaystyle n[1][1]=f_{\omega 2}}
(the [1] diagonalize)
n
[
1
]
[
1
]
1
=
f
ω
2
+
1
{\displaystyle n[1][1]1=f_{\omega 2+1}}
n
[
1
]
[
1
]
2
=
f
ω
2
+
2
{\displaystyle n[1][1]2=f_{\omega 2+2}}
n
[
1
]
[
1
]
3
=
f
ω
2
+
3
{\displaystyle n[1][1]3=f_{\omega 2+3}}
n
[
1
]
[
1
]
[
1
]
=
f
ω
3
{\displaystyle n[1][1][1]=f_{\omega 3}}
n
[
1
]
[
1
]
[
1
]
1
=
f
ω
3
+
1
{\displaystyle n[1][1][1]1=f_{\omega 3+1}}
n
[
1
]
[
1
]
[
1
]
2
=
f
ω
3
+
2
{\displaystyle n[1][1][1]2=f_{\omega 3+2}}
Until now it is very clear that this notation is similar to hyper e in general
n
[
1
]
[
1
]
[
1
]
[
1
]
=
f
ω
4
{\displaystyle n[1][1][1][1]=f_{\omega 4}}
n
[
1
]
[
1
]
[
1
]
[
1
]
[
1
]
=
f
ω
5
{\displaystyle n[1][1][1][1][1]=f_{\omega 5}}
n
[
1
]
[
1
]
[
1
]
[
1
]
[
1
]
[
1
]
=
f
ω
6
{\displaystyle n[1][1][1][1][1][1]=f_{\omega 6}}
n
[
2
]
=
f
ω
2
{\displaystyle n[2]=f_{\omega ^{2}}}
n
[
2
]
1
=
f
ω
2
+
1
{\displaystyle n[2]1=f_{\omega ^{2}+1}}
n
[
2
]
2
=
f
ω
2
+
2
{\displaystyle n[2]2=f_{\omega ^{2}+2}}
n
[
2
]
3
=
f
ω
2
+
3
{\displaystyle n[2]3=f_{\omega ^{2}+3}}
n
[
2
]
[
1
]
=
f
ω
2
+
ω
{\displaystyle n[2][1]=f_{\omega ^{2}+\omega }}
Pay attention carefully, don't misunderstand
n
[
2
]
[
1
]
1
=
f
ω
2
+
ω
+
1
{\displaystyle n[2][1]1=f_{\omega ^{2}+\omega +1}}
n
[
2
]
[
1
]
2
=
f
ω
2
+
ω
+
2
{\displaystyle n[2][1]2=f_{\omega ^{2}+\omega +2}}
n
[
2
]
[
1
]
[
1
]
=
f
ω
2
+
ω
2
{\displaystyle n[2][1][1]=f_{\omega ^{2}+\omega 2}}
look very similar to extended hyper e notation
n
[
2
]
[
1
]
[
1
]
[
1
]
=
f
ω
2
+
ω
3
{\displaystyle n[2][1][1][1]=f_{\omega ^{2}+\omega 3}}
n
[
2
]
[
2
]
=
f
ω
2
2
{\displaystyle n[2][2]=f_{\omega ^{2}2}}
Maybe by now you have seen my obilique notation pattern
n
[
2
]
[
2
]
[
1
]
=
f
ω
2
2
+
ω
{\displaystyle n[2][2][1]=f_{\omega ^{2}2+\omega }}
n
[
2
]
[
2
]
[
1
]
[
1
]
=
f
ω
2
2
+
ω
2
{\displaystyle n[2][2][1][1]=f_{\omega ^{2}2+\omega 2}}
n
[
2
]
[
2
]
[
1
]
[
1
]
[
1
]
=
f
ω
2
2
+
ω
3
{\displaystyle n[2][2][1][1][1]=f_{\omega ^{2}2+\omega 3}}
n
[
2
]
[
2
]
[
2
]
=
f
ω
2
3
{\displaystyle n[2][2][2]=f_{\omega ^{2}3}}
n
[
2
]
[
2
]
[
2
]
[
2
]
=
f
ω
2
4
{\displaystyle n[2][2][2][2]=f_{\omega ^{2}4}}
n
[
2
]
[
2
]
[
2
]
[
2
]
[
2
]
=
f
ω
2
5
{\displaystyle n[2][2][2][2][2]=f_{\omega ^{2}5}}
n
[
3
]
=
f
ω
3
{\displaystyle n[3]=f_{\omega ^{3}}}
Second movement [ ]
n
[
3
]
1
=
f
ω
3
+
1
{\displaystyle n[3]1=f_{\omega ^{3}+1}}
n
[
3
]
[
1
]
=
f
ω
3
+
ω
{\displaystyle n[3][1]=f_{\omega ^{3}+\omega }}
n
[
3
]
[
1
]
[
1
]
=
f
ω
3
+
ω
2
{\displaystyle n[3][1][1]=f_{\omega ^{3}+\omega 2}}
n
[
3
]
[
1
]
[
1
]
[
1
]
=
f
ω
3
+
ω
3
{\displaystyle n[3][1][1][1]=f_{\omega ^{3}+\omega 3}}
n
[
3
]
[
1
]
[
1
]
[
1
]
[
1
]
=
f
ω
3
+
ω
4
{\displaystyle n[3][1][1][1][1]=f_{\omega ^{3}+\omega 4}}
n
[
3
]
[
2
]
=
f
ω
3
+
ω
2
{\displaystyle n[3][2]=f_{\omega ^{3}+\omega ^{2}}}
n
[
3
]
[
2
]
[
1
]
=
f
ω
3
+
ω
2
+
ω
{\displaystyle n[3][2][1]=f_{\omega ^{3}+\omega ^{2}+\omega }}
n
[
3
]
[
2
]
[
2
]
=
f
ω
3
+
ω
2
2
{\displaystyle n[3][2][2]=f_{\omega ^{3}+\omega ^{2}2}}
n
[
3
]
[
2
]
[
2
]
[
2
]
=
f
ω
3
+
ω
2
3
{\displaystyle n[3][2][2][2]=f_{\omega ^{3}+\omega ^{2}3}}
n
[
3
]
[
3
]
=
f
ω
3
2
{\displaystyle n[3][3]=f_{\omega ^{3}2}}
n
[
3
]
[
3
]
[
3
]
=
f
ω
3
3
{\displaystyle n[3][3][3]=f_{\omega ^{3}3}}
n
[
3
]
[
3
]
[
3
]
[
3
]
=
f
ω
3
4
{\displaystyle n[3][3][3][3]=f_{\omega ^{3}4}}
n
[
4
]
=
f
ω
4
{\displaystyle n[4]=f_{\omega ^{4}}}
n
[
4
]
[
1
]
=
f
ω
4
+
ω
{\displaystyle n[4][1]=f_{\omega ^{4}+\omega }}
n
[
4
]
[
1
]
=
f
ω
4
+
ω
{\displaystyle n[4][1]=f_{\omega ^{4}+\omega }}
n
[
4
]
[
1
]
=
f
ω
4
+
ω
{\displaystyle n[4][1]=f_{\omega ^{4}+\omega }}
n
[
4
]
[
1
]
[
1
]
=
f
ω
4
+
ω
2
{\displaystyle n[4][1][1]=f_{\omega ^{4}+\omega 2}}
n
[
4
]
[
1
]
[
1
]
[
1
]
=
f
ω
4
+
ω
3
{\displaystyle n[4][1][1][1]=f_{\omega ^{4}+\omega 3}}
n
[
4
]
[
1
]
[
1
]
[
1
]
[
1
]
=
f
ω
4
+
ω
4
{\displaystyle n[4][1][1][1][1]=f_{\omega ^{4}+\omega 4}}
n
[
4
]
[
2
]
=
f
ω
4
+
ω
2
{\displaystyle n[4][2]=f_{\omega ^{4}+\omega ^{2}}}
n
[
4
]
[
2
]
[
1
]
=
f
ω
4
+
ω
2
+
ω
{\displaystyle n[4][2][1]=f_{\omega ^{4}+\omega ^{2}+\omega }}
n
[
4
]
[
2
]
[
1
]
[
1
]
=
f
ω
4
+
ω
2
+
ω
2
{\displaystyle n[4][2][1][1]=f_{\omega ^{4}+\omega ^{2}+\omega 2}}
n
[
4
]
[
2
]
[
1
]
[
1
]
[
1
]
=
f
ω
4
+
ω
2
+
ω
3
{\displaystyle n[4][2][1][1][1]=f_{\omega ^{4}+\omega ^{2}+\omega 3}}
n
[
4
]
[
2
]
[
2
]
=
f
ω
4
+
ω
2
+
ω
2
{\displaystyle n[4][2][2]=f_{\omega ^{4}+\omega ^{2}+\omega ^{2}}}
n
[
4
]
[
2
]
[
2
]
[
2
]
=
f
ω
4
+
ω
2
2
{\displaystyle n[4][2][2][2]=f_{\omega ^{4}+\omega ^{2}2}}
n
[
4
]
[
3
]
=
f
ω
4
+
ω
3
{\displaystyle n[4][3]=f_{\omega ^{4}+\omega ^{3}}}
n
[
4
]
[
3
]
[
3
]
=
f
ω
4
+
ω
3
2
{\displaystyle n[4][3][3]=f_{\omega ^{4}+\omega ^{3}2}}
n
[
4
]
[
4
]
=
f
ω
4
2
{\displaystyle n[4][4]=f_{\omega ^{4}2}}
Look at the pattern, that so similar to obilique notation, so then
n
[
4
]
[
4
]
[
4
]
=
f
ω
4
3
{\displaystyle n[4][4][4]=f_{\omega ^{4}3}}
n
[
4
]
[
4
]
[
4
]
[
4
]
=
f
ω
4
4
{\displaystyle n[4][4][4][4]=f_{\omega ^{4}4}}
n
[
4
]
[
4
]
[
4
]
[
4
]
[
4
]
=
f
ω
4
5
{\displaystyle n[4][4][4][4][4]=f_{\omega ^{4}5}}
n
[
5
]
=
f
ω
5
{\displaystyle n[5]=f_{\omega ^{5}}}
n
[
6
]
=
f
ω
6
{\displaystyle n[6]=f_{\omega ^{6}}}
n
[
7
]
=
f
ω
7
{\displaystyle n[7]=f_{\omega ^{7}}}
n
[
[
1
]
]
=
f
ω
ω
{\displaystyle n[[1]]=f_{\omega ^{\omega }}}
Third movement [ ]
n
[
[
1
]
]
1
=
f
ω
ω
+
1
{\displaystyle n[[1]]1=f_{\omega ^{\omega }+1}}
n
[
[
1
]
]
2
=
f
ω
ω
+
2
{\displaystyle n[[1]]2=f_{\omega ^{\omega }+2}}
n
[
[
1
]
]
3
=
f
ω
ω
+
3
{\displaystyle n[[1]]3=f_{\omega ^{\omega }+3}}
n
[
[
1
]
]
[
1
]
=
f
ω
ω
+
ω
{\displaystyle n[[1]][1]=f_{\omega ^{\omega }+\omega }}
n
[
[
1
]
]
[
1
]
[
1
]
=
f
ω
ω
+
ω
2
{\displaystyle n[[1]][1][1]=f_{\omega ^{\omega }+\omega 2}}
n
[
[
1
]
]
[
1
]
[
1
]
[
1
]
=
f
ω
ω
+
ω
3
{\displaystyle n[[1]][1][1][1]=f_{\omega ^{\omega }+\omega 3}}
n
[
[
1
]
]
[
1
]
[
1
]
[
1
]
=
f
ω
ω
+
ω
3
{\displaystyle n[[1]][1][1][1]=f_{\omega ^{\omega }+\omega 3}}
n
[
[
1
]
]
[
2
]
=
f
ω
ω
+
ω
2
{\displaystyle n[[1]][2]=f_{\omega ^{\omega }+\omega ^{2}}}
n
[
[
1
]
]
[
2
]
[
2
]
=
f
ω
ω
+
ω
2
2
{\displaystyle n[[1]][2][2]=f_{\omega ^{\omega }+\omega ^{2}2}}
n
[
[
1
]
]
[
2
]
[
2
]
[
2
]
=
f
ω
ω
+
ω
2
3
{\displaystyle n[[1]][2][2][2]=f_{\omega ^{\omega }+\omega ^{2}3}}
n
[
[
1
]
]
[
3
]
=
f
ω
ω
+
ω
3
{\displaystyle n[[1]][3]=f_{\omega ^{\omega }+\omega ^{3}}}
n
[
[
1
]
]
[
4
]
=
f
ω
ω
+
ω
4
{\displaystyle n[[1]][4]=f_{\omega ^{\omega }+\omega ^{4}}}
n
[
[
1
]
]
[
5
]
=
f
ω
ω
+
ω
5
{\displaystyle n[[1]][5]=f_{\omega ^{\omega }+\omega ^{5}}}
n
[
[
1
]
]
[
[
1
]
]
=
f
ω
ω
2
{\displaystyle n[[1]][[1]]=f_{\omega ^{\omega }2}}
how can we continue it again
n
[
[
1
]
]
[
[
1
]
]
[
[
1
]
]
=
f
ω
ω
3
{\displaystyle n[[1]][[1]][[1]]=f_{\omega ^{\omega }3}}
n
[
[
1
]
]
[
[
1
]
]
[
[
1
]
]
[
[
1
]
]
=
f
ω
ω
4
{\displaystyle n[[1]][[1]][[1]][[1]]=f_{\omega ^{\omega }4}}
n
[
[
1
]
]
[
[
1
]
]
[
[
1
]
]
[
[
1
]
]
[
[
1
]
]
=
f
ω
ω
5
{\displaystyle n[[1]][[1]][[1]][[1]][[1]]=f_{\omega ^{\omega }5}}
n
[
[
1
]
]
[
[
1
]
]
[
[
1
]
]
[
[
1
]
]
[
[
1
]
]
[
[
1
]
]
=
f
ω
ω
6
{\displaystyle n[[1]][[1]][[1]][[1]][[1]][[1]]=f_{\omega ^{\omega }6}}
n
[
[
1
]
1
]
=
f
ω
ω
+
1
{\displaystyle n[[1]1]=f_{\omega ^{\omega +1}}}
n
[
[
1
]
1
]
=
f
ω
ω
+
1
{\displaystyle n[[1]1]=f_{\omega ^{\omega +1}}}
n
[
[
1
]
1
]
[
[
1
]
]
=
f
ω
ω
+
1
+
ω
ω
{\displaystyle n[[1]1][[1]]=f_{\omega ^{\omega +1}+\omega ^{\omega }}}
n
[
[
1
]
1
]
[
[
1
]
]
[
[
1
]
]
=
f
ω
ω
+
1
+
ω
ω
2
{\displaystyle n[[1]1][[1]][[1]]=f_{\omega ^{\omega +1}+\omega ^{\omega }2}}
n
[
[
1
]
1
]
[
[
1
]
]
[
[
1
]
]
[
[
1
]
]
=
f
ω
ω
+
1
+
ω
ω
3
{\displaystyle n[[1]1][[1]][[1]][[1]]=f_{\omega ^{\omega +1}+\omega ^{\omega }3}}
n
[
[
1
]
1
]
[
[
1
]
]
[
[
1
]
]
[
[
1
]
]
[
[
1
]
]
=
f
ω
ω
+
1
+
ω
ω
4
{\displaystyle n[[1]1][[1]][[1]][[1]][[1]]=f_{\omega ^{\omega +1}+\omega ^{\omega }4}}
n
[
[
1
]
1
]
[
[
1
]
1
]
=
f
ω
ω
+
1
2
{\displaystyle n[[1]1][[1]1]=f_{\omega ^{\omega +1}2}}
n
[
[
1
]
1
]
[
[
1
]
1
]
[
[
1
]
1
]
=
f
ω
ω
+
1
3
{\displaystyle n[[1]1][[1]1][[1]1]=f_{\omega ^{\omega +1}3}}
n
[
[
1
]
1
]
[
[
1
]
1
]
[
[
1
]
1
]
[
[
1
]
1
]
=
f
ω
ω
+
1
4
{\displaystyle n[[1]1][[1]1][[1]1][[1]1]=f_{\omega ^{\omega +1}4}}
n
[
[
1
]
2
]
=
f
ω
ω
+
2
{\displaystyle n[[1]2]=f_{\omega ^{\omega +2}}}
n
[
[
1
]
2
]
[
[
1
]
]
=
f
ω
ω
+
2
+
ω
ω
{\displaystyle n[[1]2][[1]]=f_{\omega ^{\omega +2}+\omega ^{\omega }}}
n
[
[
1
]
2
]
[
[
1
]
]
[
[
1
]
]
=
f
ω
ω
+
2
+
ω
ω
2
{\displaystyle n[[1]2][[1]][[1]]=f_{\omega ^{\omega +2}+\omega ^{\omega }2}}
n
[
[
1
]
2
]
[
[
1
]
]
[
[
1
]
]
[
[
1
]
]
=
f
ω
ω
+
2
+
ω
ω
3
{\displaystyle n[[1]2][[1]][[1]][[1]]=f_{\omega ^{\omega +2}+\omega ^{\omega }3}}
n
[
[
1
]
2
]
[
[
1
]
]
[
[
1
]
]
[
[
1
]
]
[
[
1
]
]
=
f
ω
ω
+
2
+
ω
ω
4
{\displaystyle n[[1]2][[1]][[1]][[1]][[1]]=f_{\omega ^{\omega +2}+\omega ^{\omega }4}}
n
[
[
1
]
2
]
[
[
1
]
2
]
=
f
ω
ω
+
2
2
{\displaystyle n[[1]2][[1]2]=f_{\omega ^{\omega +2}2}}
n
[
[
1
]
2
]
[
[
1
]
2
]
[
[
1
]
2
]
=
f
ω
ω
+
2
3
{\displaystyle n[[1]2][[1]2][[1]2]=f_{\omega ^{\omega +2}3}}
n
[
[
1
]
2
]
[
[
1
]
2
]
[
[
1
]
2
]
[
[
1
]
2
]
=
f
ω
ω
+
2
4
{\displaystyle n[[1]2][[1]2][[1]2][[1]2]=f_{\omega ^{\omega +2}4}}
n
[
[
1
]
3
]
=
f
ω
ω
+
3
{\displaystyle n[[1]3]=f_{\omega ^{\omega +3}}}
n
[
[
1
]
3
]
[
1
]
=
f
ω
ω
+
3
+
ω
{\displaystyle n[[1]3][1]=f_{\omega ^{\omega +3}+\omega }}
n
[
[
1
]
3
]
[
2
]
=
f
ω
ω
+
3
+
ω
2
{\displaystyle n[[1]3][2]=f_{\omega ^{\omega +3}+\omega ^{2}}}
n
[
[
1
]
3
]
[
3
]
=
f
ω
ω
+
3
+
ω
3
{\displaystyle n[[1]3][3]=f_{\omega ^{\omega +3}+\omega ^{3}}}
n
[
[
1
]
3
]
[
[
1
]
]
=
f
ω
ω
+
3
+
ω
ω
{\displaystyle n[[1]3][[1]]=f_{\omega ^{\omega +3}+\omega ^{\omega }}}
n
[
[
1
]
3
]
[
[
1
]
3
]
=
f
ω
ω
+
3
2
{\displaystyle n[[1]3][[1]3]=f_{\omega ^{\omega +3}2}}
n
[
[
1
]
3
]
[
[
1
]
3
]
=
f
ω
ω
+
3
2
{\displaystyle n[[1]3][[1]3]=f_{\omega ^{\omega +3}2}}
n
[
[
1
]
3
]
[
[
1
]
3
]
[
[
1
]
3
]
=
f
ω
ω
+
3
3
{\displaystyle n[[1]3][[1]3][[1]3]=f_{\omega ^{\omega +3}3}}
n
[
[
1
]
3
]
[
[
1
]
3
]
[
[
1
]
3
]
[
[
1
]
3
]
=
f
ω
ω
+
3
4
{\displaystyle n[[1]3][[1]3][[1]3][[1]3]=f_{\omega ^{\omega +3}4}}
n
[
[
1
]
3
]
[
[
1
]
3
]
[
[
1
]
3
]
[
[
1
]
3
]
=
f
ω
ω
+
3
4
{\displaystyle n[[1]3][[1]3][[1]3][[1]3]=f_{\omega ^{\omega +3}4}}
n
[
[
1
]
4
]
=
f
ω
ω
+
4
{\displaystyle n[[1]4]=f_{\omega ^{\omega +4}}}
n
[
[
1
]
5
]
=
f
ω
ω
+
5
{\displaystyle n[[1]5]=f_{\omega ^{\omega +5}}}
n
[
[
1
]
[
1
]
]
=
f
ω
ω
2
{\displaystyle n[[1][1]]=f_{\omega ^{\omega 2}}}
Maybe at this point you will see a pattern of cascading e notation
n
[
[
1
]
[
1
]
]
[
[
1
]
[
1
]
]
=
f
ω
ω
2
2
{\displaystyle n[[1][1]][[1][1]]=f_{\omega ^{\omega 2}2}}
n
[
[
1
]
[
1
]
]
[
[
1
]
[
1
]
]
[
[
1
]
[
1
]
]
=
f
ω
ω
2
3
{\displaystyle n[[1][1]][[1][1]][[1][1]]=f_{\omega ^{\omega 2}3}}
n
[
[
1
]
[
1
]
]
[
[
1
]
[
1
]
]
[
[
1
]
[
1
]
]
[
[
1
]
[
1
]
]
=
f
ω
ω
2
4
{\displaystyle n[[1][1]][[1][1]][[1][1]][[1][1]]=f_{\omega ^{\omega 2}4}}
n
[
[
1
]
[
1
]
1
]
=
f
ω
ω
2
+
1
{\displaystyle n[[1][1]1]=f_{\omega ^{\omega 2+1}}}
n
[
[
1
]
[
1
]
2
]
=
f
ω
ω
2
+
2
{\displaystyle n[[1][1]2]=f_{\omega ^{\omega 2+2}}}
n
[
[
1
]
[
1
]
3
]
=
f
ω
ω
2
+
3
{\displaystyle n[[1][1]3]=f_{\omega ^{\omega 2+3}}}
n
[
[
1
]
[
1
]
4
]
=
f
ω
ω
2
+
4
{\displaystyle n[[1][1]4]=f_{\omega ^{\omega 2+4}}}
n
[
[
1
]
[
1
]
[
1
]
]
=
f
ω
ω
3
{\displaystyle n[[1][1][1]]=f_{\omega ^{\omega 3}}}
n
[
[
1
]
[
1
]
[
1
]
[
1
]
]
=
f
ω
ω
4
{\displaystyle n[[1][1][1][1]]=f_{\omega ^{\omega 4}}}
n
[
[
1
]
[
1
]
[
1
]
[
1
]
[
1
]
]
=
f
ω
ω
5
{\displaystyle n[[1][1][1][1][1]]=f_{\omega ^{\omega 5}}}
n
[
[
2
]
]
=
f
ω
ω
2
{\displaystyle n[[2]]=f_{\omega ^{\omega ^{2}}}}
n
[
[
2
]
]
[
[
2
]
]
=
f
ω
ω
2
2
{\displaystyle n[[2]][[2]]=f_{\omega ^{\omega ^{2}}2}}
just follow the pattern
n
[
[
2
]
]
[
[
2
]
]
[
[
2
]
]
=
f
ω
ω
2
3
{\displaystyle n[[2]][[2]][[2]]=f_{\omega ^{\omega ^{2}}3}}
n
[
[
2
]
]
[
[
2
]
]
[
[
2
]
]
=
f
ω
ω
2
3
{\displaystyle n[[2]][[2]][[2]]=f_{\omega ^{\omega ^{2}}3}}
n
[
[
2
]
]
[
[
2
]
]
[
[
2
]
]
[
[
2
]
]
=
f
ω
ω
2
3
{\displaystyle n[[2]][[2]][[2]][[2]]=f_{\omega ^{\omega ^{2}}3}}
n
[
[
2
]
1
]
=
f
ω
ω
2
+
1
{\displaystyle n[[2]1]=f_{\omega ^{\omega ^{2}+1}}}
n
[
[
2
]
2
]
=
f
ω
ω
2
+
2
{\displaystyle n[[2]2]=f_{\omega ^{\omega ^{2}+2}}}
n
[
[
2
]
3
]
=
f
ω
ω
2
+
3
{\displaystyle n[[2]3]=f_{\omega ^{\omega ^{2}+3}}}
n
[
[
2
]
[
1
]
]
=
f
ω
ω
2
+
ω
{\displaystyle n[[2][1]]=f_{\omega ^{\omega ^{2}+\omega }}}
n
[
[
2
]
[
1
]
[
1
]
]
=
f
ω
ω
2
+
ω
2
{\displaystyle n[[2][1][1]]=f_{\omega ^{\omega ^{2}+\omega 2}}}
n
[
[
2
]
[
1
]
[
1
]
[
1
]
]
=
f
ω
ω
2
+
ω
3
{\displaystyle n[[2][1][1][1]]=f_{\omega ^{\omega ^{2}+\omega 3}}}
n
[
[
2
]
[
2
]
]
=
f
ω
ω
2
2
{\displaystyle n[[2][2]]=f_{\omega ^{\omega ^{2}2}}}
n
[
[
2
]
[
2
]
[
1
]
]
=
f
ω
ω
2
2
+
1
{\displaystyle n[[2][2][1]]=f_{\omega ^{\omega ^{2}2+1}}}
n
[
[
2
]
[
2
]
[
1
]
[
1
]
]
=
f
ω
ω
2
2
+
2
{\displaystyle n[[2][2][1][1]]=f_{\omega ^{\omega ^{2}2+2}}}
n
[
[
2
]
[
2
]
[
2
]
]
=
f
ω
ω
2
3
{\displaystyle n[[2][2][2]]=f_{\omega ^{\omega ^{2}3}}}
n
[
[
2
]
[
2
]
[
2
]
[
2
]
]
=
f
ω
ω
2
4
{\displaystyle n[[2][2][2][2]]=f_{\omega ^{\omega ^{2}4}}}
n
[
[
2
]
[
2
]
[
2
]
[
2
]
[
2
]
]
=
f
ω
ω
2
5
{\displaystyle n[[2][2][2][2][2]]=f_{\omega ^{\omega ^{2}5}}}
n
[
[
3
]
]
=
f
ω
ω
3
{\displaystyle n[[3]]=f_{\omega ^{\omega ^{3}}}}
n
[
[
3
]
]
=
f
ω
ω
3
{\displaystyle n[[3]]=f_{\omega ^{\omega ^{3}}}}
n
[
[
3
]
]
[
[
3
]
]
=
f
ω
ω
3
2
{\displaystyle n[[3]][[3]]=f_{\omega ^{\omega ^{3}}2}}
n
[
[
3
]
]
[
[
3
]
]
[
[
3
]
]
=
f
ω
ω
3
3
{\displaystyle n[[3]][[3]][[3]]=f_{\omega ^{\omega ^{3}}3}}
n
[
[
3
]
]
[
[
3
]
]
[
[
3
]
]
[
[
3
]
]
=
f
ω
ω
3
4
{\displaystyle n[[3]][[3]][[3]][[3]]=f_{\omega ^{\omega ^{3}}4}}
n
[
[
3
]
1
]
=
f
ω
ω
3
+
1
{\displaystyle n[[3]1]=f_{\omega ^{\omega ^{3}+1}}}
n
[
[
3
]
2
]
=
f
ω
ω
3
+
2
{\displaystyle n[[3]2]=f_{\omega ^{\omega ^{3}+2}}}
n
[
[
3
]
3
]
=
f
ω
ω
3
+
3
{\displaystyle n[[3]3]=f_{\omega ^{\omega ^{3}+3}}}
n
[
[
3
]
[
1
]
]
=
f
ω
ω
3
+
ω
{\displaystyle n[[3][1]]=f_{\omega ^{\omega ^{3}+\omega }}}
n
[
[
3
]
[
1
]
]
=
f
ω
ω
3
+
ω
{\displaystyle n[[3][1]]=f_{\omega ^{\omega ^{3}+\omega }}}
n
[
[
3
]
[
1
]
[
1
]
]
=
f
ω
ω
3
+
ω
2
{\displaystyle n[[3][1][1]]=f_{\omega ^{\omega ^{3}+\omega 2}}}
n
[
[
3
]
[
1
]
[
1
]
[
1
]
]
=
f
ω
ω
3
+
ω
3
{\displaystyle n[[3][1][1][1]]=f_{\omega ^{\omega ^{3}+\omega 3}}}
n
[
[
3
]
[
2
]
]
=
f
ω
ω
3
+
ω
2
{\displaystyle n[[3][2]]=f_{\omega ^{\omega ^{3}+\omega ^{2}}}}
n
[
[
3
]
[
3
]
]
=
f
ω
ω
3
+
ω
3
{\displaystyle n[[3][3]]=f_{\omega ^{\omega ^{3}+\omega ^{3}}}}
n
[
[
3
]
[
3
]
]
=
f
ω
ω
3
2
{\displaystyle n[[3][3]]=f_{\omega ^{\omega ^{3}2}}}
n
[
[
3
]
[
3
]
[
3
]
]
=
f
ω
ω
3
3
{\displaystyle n[[3][3][3]]=f_{\omega ^{\omega ^{3}3}}}
n
[
[
3
]
[
3
]
[
3
]
[
3
]
]
=
f
ω
ω
3
4
{\displaystyle n[[3][3][3][3]]=f_{\omega ^{\omega ^{3}4}}}
n
[
[
3
]
[
3
]
[
3
]
[
3
]
[
3
]
]
=
f
ω
ω
3
5
{\displaystyle n[[3][3][3][3][3]]=f_{\omega ^{\omega ^{3}5}}}
n
[
[
4
]
]
=
f
ω
ω
4
{\displaystyle n[[4]]=f_{\omega ^{\omega ^{4}}}}
n
[
[
5
]
]
=
f
ω
ω
5
{\displaystyle n[[5]]=f_{\omega ^{\omega ^{5}}}}
n
[
[
6
]
]
=
f
ω
ω
6
{\displaystyle n[[6]]=f_{\omega ^{\omega ^{6}}}}
n
[
[
7
]
]
=
f
ω
ω
7
{\displaystyle n[[7]]=f_{\omega ^{\omega ^{7}}}}
n
[
[
[
1
]
]
]
=
f
ω
ω
ω
{\displaystyle n[[[1]]]=f_{\omega ^{\omega ^{\omega }}}}
EUREKA