n
<
ω
{\textstyle n<\omega}
[ ]
M
0
(
n
)
{\displaystyle M_0(n)}
Is the same as
f
0
(
n
)
{\displaystyle f_{0}(n)}
in the fast growing hierarchy . Dont know what that is? Its just
n
+
1
{\displaystyle n+1}
.
Anyways, the
M
{\displaystyle M}
hierarchy maps (nearly) every function in googology wiki's list of functions (as of 6/1/2024)
M
0
m
(
n
)
=
n
+
m
{\displaystyle M^m_0(n)=n+m}
. Note
n
+
m
{\displaystyle n+m}
isnt expressible in
M
a
(
n
)
{\displaystyle M_a(n)}
without using iterations.
M
1
(
n
)
=
2
n
{\displaystyle M_1(n)=2n}
M
2
(
n
)
=
n
n
,
M
2
2
(
m
)
=
M
2
(
M
2
(
n
)
)
=
M
2
(
n
n
)
=
(
n
n
)
(
n
n
)
{\displaystyle M_2(n)=n^n, M^2_2(m)=M_2(M_2(n))=M_2(n^n)=(n^n)^(n^n)}
M
3
(
n
)
=
n
!
,
M
3
2
(
n
)
=
M
3
(
n
!
)
=
(
n
!
)
!
{\displaystyle M_3(n)=n!, M^2_3(n)=M_3(n!)=(n!)!}
M
4
(
n
)
=
n
$
=
1
!
∗
2
!
∗
3
!
.
.
.
{\displaystyle M_4(n)=n$=1!*2!*3!...}
all the way to
n
!
{\displaystyle n!}
.
M
5
(
n
)
=
T
(
n
)
=
n
!
n
{\displaystyle M_5(n)=T(n)=n!n}
. Dont want to go to Torian's page ? Its basically recapped as:
x
!
n
=
∏
i
=
1
x
i
!
(
n
−
1
)
=
1
!
(
n
−
1
)
⋅
2
!
(
n
−
1
)
⋅
…
⋅
x
!
(
n
−
1
)
{\displaystyle x!n = \prod^{x}_{i = 1} i!(n - 1) = 1!(n - 1) \cdot 2!(n - 1) \cdot \ldots \cdot x!(n - 1)}
M
6
(
n
)
=
H
(
n
)
{\displaystyle M_6(n)=H(n)}
using hyperfactorials.
M
7
(
n
)
=
L
(
n
)
{\displaystyle M_7(n)=L(n)}
using the latin square .
M
8
(
n
)
=
n
↑
n
↑
n
{\displaystyle M_8(n)=n \uparrow n \uparrow n}
M
9
(
n
)
=
n
∖
{\displaystyle M_9(n)=n \backslash}
.
M
10
(
n
)
=
{\displaystyle M_{10}(n)=}
googol-n-ple-n (
n
↑
(
2
n
)
↑
n
{\displaystyle n \uparrow (2n) \uparrow n}
)
M
11
(
n
)
=
θ
(
n
)
{\displaystyle M_{11}(n)=\theta(n)}
using Bop-counting function.
M
12
(
n
)
=
n
n
{\displaystyle M_{12}(n)=n_n}
using exponential factorials.
We can see this is slower than FGH, as FGH reaches tetrational level at
f
3
(
n
)
{\displaystyle f_{3}(n)}
, but we reach that in
M
13
(
n
)
{\displaystyle M_{13}(n)}
, althought its not a approximation and EXACTLY tetration.
(im lazy to fix the errors in the index so pretend i shifted everything after this point by one)
M
13
(
n
)
=
b
a
n
(
n
)
=
n
↑
2
n
+
1
{\displaystyle M_{13}(n)=ban(n)=n \uparrow^{2}n+1}
M
14
(
n
)
=
e
x
p
o
s
t
f
a
c
t
o
(
n
)
=
n
↑
e
x
p
o
s
t
f
a
c
t
o
(
n
−
1
)
!
{\displaystyle M_{14}(n)=expostfacto(n)=n\uparrow expostfacto(n-1)!}
where
e
x
p
o
s
t
f
a
c
t
o
(
1
)
=
1
{\displaystyle expostfacto(1)=1}
M
15
(
n
)
=
n
$
{\displaystyle M_{15}(n)=n$}
using pickover's definition.
M
16
=
n
!
2
{\displaystyle M_{16}=n!2}
using tetrofactorials.
M
17
(
n
)
=
n
↑
3
n
{\displaystyle M_{17}(n)=n\uparrow^{3} n}
M
18
(
n
)
=
r
b
a
n
(
n
)
=
n
↑
n
↑
3
n
{\displaystyle M_{18}(n)=rban(n)=n\uparrow n \uparrow^{3} n}
The Map Hierarchy gives us a wow at
M
19
(
n
)
=
f
4
(
n
)
{\displaystyle M_{19}(n)=f_4(n)}
or the wow function .
M
20
(
n
)
=
{\displaystyle M_{20}(n)= }
Circle(n)
Factorials are back with
M
21
(
n
)
=
n
[
5
]
!
{\displaystyle M_{21}(n)= n[5]!}
or a Pentatorial .
If
29
>
a
>
20
{\displaystyle 29 >a>20}
,
M
a
(
n
)
=
n
↑
a
−
17
n
{\displaystyle M_a(n)=n\uparrow^{a-17}n}
M
29
(
n
)
=
g
(
n
)
{\displaystyle M_{29}(n)=g(n)}
using Weak goodstein , where we reach the level of
f
ω
(
n
)
{\displaystyle f_{\omega}(n)}
M
30
(
n
)
=
|
T
[
n
]
|
{\displaystyle M_{30}(n)=|T[n]|}
, The finite ordered tree problem.
M
31
(
n
)
=
A
(
n
,
n
)
{\displaystyle M_{31}(n)=A(n,n)}
, the Ackermann function.
M
32
(
n
)
=
b
o
o
g
a
−
n
=
n
↑
n
−
2
n
{\displaystyle M_{32}(n)= booga-n = n\uparrow^{n-2}n}
M
33
{\displaystyle M_{33}}
up to
M
35
{\displaystyle M_{35}}
are (in order): Mythical tree problem , Vector reduction problem , and davenport schinzel sequence.
M
36
{\displaystyle M_{36}}
is both arrow notation and ackermann numbers, as
M
36
(
n
)
=
n
↑
n
n
{\displaystyle M_{36}(n) =n \uparrow^{n}n}
. We will be using BEAF-related things from now on, so its
3
&
n
{\displaystyle 3\And n}
using Array of .
M
37
(
n
)
=
F
n
(
n
,
n
)
{\displaystyle M_{37}(n)=F_n(n,n)}
in the Sudan function.
M
38
(
n
)
=
n
[
n
]
{\displaystyle M_{38}(n)=n [n]}
On Steinhaus-Moser notation.
M
39
(
n
)
=
H
∗
(
n
,
n
,
⋯
n
,
n
⏟
n
)
{\displaystyle M_{39}(n)=H^*(\underbrace{n,n,\cdots n,n}_n)}
M
40
(
n
)
=
{\displaystyle M_{40}(n)=}
En#n
n
ψ
n
{\displaystyle n\psi n}
on psi notation is equal to
M
41
(
n
)
{\displaystyle M_{41}(n)}
Graham's number is defined as
g
64
{\displaystyle g_{64}}
in a sequence where
g
n
=
{
3
,
3
,
g
n
−
1
}
,
g
1
=
{
3
,
3
,
4
}
{\displaystyle g_n = \{3,3,g_{n-1}\}, g_1 = \{3,3,4\}}
, it can be defined as
M
42
(
64
)
{\displaystyle M_{42}(64)}
tho!
M
43
(
n
)
=
m
a
g
(
n
)
{\displaystyle M_{43}(n) = mag(n)}
M
44
(
n
)
=
t
r
o
o
g
a
(
n
)
{\displaystyle M_{44}(n) = trooga(n)}
M
45
(
n
)
{\displaystyle M_{45}(n)}
Explodes the trees , as its equal to
E
(
n
)
{\displaystyle E(n)}
!
M
46
(
n
)
=
n
{
{
1
}
}
n
{\displaystyle M_{46}(n) = n\{\{1\}\}n}
M
47
(
n
)
=
h
n
(
n
,
n
,
⋯
n
,
n
⏟
n
)
{\displaystyle M_{47}(n) = h_n(\underbrace{n,n,\cdots n,n}_n)}
. A very de(hyper)licious function!
M
48
=
n
{
{
2
}
}
n
{\displaystyle M_{48} = n\{\{2\}\}n }
M
49
(
n
)
=
n
n
,
n
∗
{\displaystyle M_{49}(n) = n^*_{n,n} }
Next 2 functions on the hierarchy are
n
{
{
3
}
}
n
{\displaystyle n\{\{3\}\}n }
and
n
{
{
4
}
}
n
{\displaystyle n\{\{4\}\}n }
.
M
52
(
n
)
=
n
−
a
g
(
n
)
{\displaystyle M_{52}(n) = n-ag(n) }
M
53
(
n
)
=
{\displaystyle M_{53}(n) = }
[n,n,n,n] in graham array notation.
The next 4 of them are just variations of explosion. (up to explodotetration }
M
58
(
n
)
=
{\displaystyle M_{58}(n) = }
n[n###n] using Copy Notation .
The next SEVEN are just variations of detonation (up to deconation.)
M
66
(
n
)
=
c
g
(
n
)
{\displaystyle M_{66}(n) = cg(n)}
M
67
(
n
)
=
H
n
∗
(
n
,
n
,
⋯
n
,
n
⏟
n
)
{\displaystyle M_{67}(n) = H^*_n(\underbrace{n,n,\cdots n,n}_n)}
M
68
(
n
)
=
{\displaystyle M_{68}(n) = }
[n,n{1}n] in graham array notation.
Megotions up next. IF THERES ANOTHER VARIATION OF EXPANSION I WILL- sorry.
M
70
(
n
)
=
M
~
n
{\displaystyle M_{70}(n) = \widetilde{M}_n}
CAN WE SKIP TO THE ACTUAL GOOD STUFF? sorry, its that the next TWENTY functions of the hierarchy are variations of expansion.
M
91
(
n
)
=
n
→
n
n
{\displaystyle M_{91}(n) = n\rightarrow_nn}
Using a extension of chained arrow notation .
more expansion variations...
M
94
(
n
)
=
C
(
n
,
n
,
n
)
{\displaystyle M_{94}(n) = C(n,n,n)}
using the same extension of chained arrow notation.
more expansion variations...
M
98
(
n
)
=
n
[
n
,
n
,
⋯
n
⏟
n
]
n
{\displaystyle M_{98}(n) = n[\underbrace{n,n,\cdots n}_n]n}
, aka the chained array notation .
M
99
(
n
)
=
{
n
,
n
,
n
,
n
,
n
,
n
.
.
.
n
⏟
n
}
=
n
&
n
=
X
&
n
{\displaystyle M_{99}(n) = \{\underbrace{n,n,n,n,n,n...n}_{n}\} = n\And n = X\And n}
M
100
(
n
)
=
{\displaystyle M_{100}(n) = }
nEn#n
M
101
(
m
)
=
n
(
m
)
{\displaystyle M_{101}(m) = n(m)}
Using the n(k) function.
M
102
=
Q
n
,
0
,
0
,
…
,
0
,
0
⏟
n
{\displaystyle M_{102} = Q_{\underbrace{n,0,0,\ldots,0,0}_n}}
M
103
(
n
)
=
A
(
n
,
n
.
.
.
n
)
{\displaystyle M_{103}(n) = A(n,n...n)}
with n ns.
M
104
(
n
)
=
s
(
n
)
{\displaystyle M_{104}(n) = s(n)}
M
105
(
n
)
=
M
(
n
,
0
,
0
,
⋯
0
,
⏟
n
n
)
{\displaystyle M_{105}(n) = M(n,\underbrace{0,0,\cdots0,}_nn)}
, Using the hyper-moser notation.
M
106
(
n
)
=
Forcal
n
,
n
,
⋯
n
⏟
n
(
n
)
{\displaystyle M_{106}(n) = \text{Forcal}_{\underbrace{n,n,\cdots n}_n}(n) }
, the graham generator.
M
107
(
n
)
=
n
!
[
n
,
n
,
⋯
n
,
n
⏟
n
]
{\displaystyle M_{107}(n) = n![\underbrace{n,n,\cdots n,n}_n] }
M
108
(
n
)
=
n
↑→↑
n
{\displaystyle M_{108}(n) = n\uparrow\rightarrow\uparrow n }
on matthew's function.
M
109
(
n
)
=
{
n
,
n
(
2
)
n
}
{\displaystyle M_{109}(n) = \{n,n (2) n\} }
Sadly, the next 2 \ notations are ill-defined (
{
a
,
b
(
0
,
1
)
c
}
{\displaystyle \{a,b(0,1)c\} }
and
{
a
,
b
(
0
,
0
…
0
,
0
,
1
⏟
n
)
c
}
{\displaystyle \{a,b(\underbrace{0,0\ldots0,0,1}_{n})c\} }
) and cannot be included in the hierarchy.
M
110
(
n
)
=
G
(
n
)
{\displaystyle M_{110}(n) = G(n) }
as
g
(
n
)
{\displaystyle g(n)}
grew up.
M
111
(
n
)
=
n
$
[
[
n
]
n
]
{\displaystyle M_{111}(n) = n\$[[n]_n] }
, aka 🤑 function
Again, another ill-defined notation (
b
a
&
n
{\displaystyle {^ba} \& n }
).
M
112
(
n
)
=
(
n
,
n
,
n
,
n
,
n
,
n
.
.
.
n
{
n
,
n
}
n
)
{\displaystyle M_{112}(n) = (n,n,n,n,n,n...n\{n,n\}n) }
. This isnt NaN but NaN .
M
113
(
n
)
=
E
n
#
n
n
{\displaystyle M_{113}(n) = En \#^nn }
. #s were definitely cascading down the stairs.
M
114
(
n
)
=
#
∗
(
n
,
n
,
n
)
∗
n
{\displaystyle M_{114}(n) = \#^*(n,n,n)^* n }
, a expression in pound star notation.
Its time for theorems as
M
115
(
n
)
=
C
i
r
c
l
e
(
n
)
{\displaystyle M_{115}(n) = Circle(n) }
, a notation by friedman.
M
116
(
n
)
=
m
(
n
)
{\displaystyle M_{116}(n) = m(n) }
, a map becoming a map.
M
117
(
n
)
=
h
y
d
r
a
(
n
)
{\displaystyle M_{117}(n) = hydra(n) }
. Yeah, buccholz has a hydra. Wait wrong hydra -
M
118
(
n
)
=
w
o
r
m
(
n
)
{\displaystyle M_{118}(n) = worm(n) }
.
M
119
(
n
)
=
P
n
(
n
)
{\displaystyle M_{119}(n)=P^n(n) }
using PSN's definition.
M
120
(
n
)
=
h
(
g
(
n
)
,
n
)
{\displaystyle M_{120}(n) = h(g(n),n) }
, using the definition of marxen.c .
M
121
(
n
)
=
n
{
X
>
X
>
X
>
X
.
.
.
>
X
}
n
{\displaystyle M_{121}(n) = n\{X>X>X>X...>X\}n }
in X sequence hyper exponential notation.
We have a incomplete function and one that doesnt even exist so we skip them.
M
122
(
n
)
=
m
1
(
n
)
{\displaystyle M_{122}(n) = m_1(n) }
, what a fusible function!
M
124
(
n
)
=
{\displaystyle M_{124}(n) = }
En#^...^#n, or how i could like to call it
E
n
#
↑
n
#
n
{\displaystyle En\#\uparrow^n\#n }
.
*skip*
M
125
(
n
)
=
n
Q
n
,
0
,
0
,
…
,
0
,
0
⏟
n
(
n
)
{\displaystyle M_{125}(n) = nQ_{\underbrace{n,0,0,\ldots,0,0}_{n}}(n) }
M
126
(
n
)
=
t
r
e
e
(
n
)
{\displaystyle M_{126}(n) = tree(n) }
M
127
(
n
)
=
T
R
E
E
(
n
)
{\displaystyle M_{127}(n) = TREE(n) }
idk if its a good idea to add the next one so id skip it. I also dont think collapsing-E is a good idea, since arrays with #s in it arent fully formalized. I wont use the H S U trio, as i think they are ill defined.
M
128
(
n
)
=
P
n
[
n
]
{\displaystyle M_{128}(n) = P^n[n] }
, tthhee ppaaiirr sseeqquueennccee ssyysstteemm (haha? get it? theres a pair for every le-)
Hyper primitive sequence system spits out ordinals , so its skipped.
M
129
(
n
)
=
g
n
(
n
)
{\displaystyle M_{129}(n) = g^{n}(n) }
using stage array notation.
M
130
(
n
)
=
S
C
G
(
n
)
{\displaystyle M_{130}(n) = SCG(n) }
. Quite subcubic.
M
131
(
n
)
=
B
H
(
n
)
{\displaystyle M_{131}(n) = BH(n) }
. Buccholz has a hydra. The right one this time!
We will skip 4 of the next functions because i suspect BAN is ill-defined, i already talked about HSU, already taled about hyperfactorial array notation, and this variation of stage array notation spits out ordinals.
M
132
(
n
)
=
(
0
,
0
,
0
,
0...
)
(
1
,
1
,
1
,
1...
)
[
n
]
{\displaystyle M_{132}(n) = (0,0,0,0...)(1,1,1,1...)[n]}
, with n 0s and n 1s.
M
133
=
D
n
(
n
)
{\displaystyle M_{133} = D^n(n)}
using loader's function.
M
134
(
n
)
=
F
(
n
,
n
)
{\displaystyle M_{134}(n) =F(n,n) }
, aka friedman's finite trees
M
135
(
n
)
=
q
n
(
n
)
{\displaystyle M_{135}(n) = q^n(n) }
where
q
n
(
n
)
=
q
(
q
(
q
(
q
(
.
.
.
n
.
.
.
)
)
)
)
{\displaystyle q^n(n) = q(q(q(q(...n...)))) }
with n iterations.
Now the map hierarchy takes a turn, it might have been really slow growing, but its now uncomputable, even if it took 137 stages to do so.
M
136
(
n
)
=
Σ
(
n
)
{\displaystyle M_{136}(n) = \Sigma(n) }
M
137
(
n
)
=
S
(
n
)
{\displaystyle M_{137}(n) = S(n) }
, the FF function.
M
138
(
n
)
=
P
P
(
n
)
{\displaystyle M_{138}(n) = PP(n) }
M
139
(
n
)
=
W
W
(
n
)
{\displaystyle M_{139}(n) = WW(n) }
M
140
(
n
)
=
Σ
n
(
n
)
{\displaystyle M_{140}(n) = \Sigma_n(n) }
M
141
(
n
)
=
b
n
(
n
)
{\displaystyle M_{141}(n) = b_n(n) }
M
142
(
n
)
=
d
o
o
d
l
e
(
n
)
{\displaystyle M_{142}(n) = doodle(n) }
M
143
(
n
)
=
Ξ
(
n
)
{\displaystyle M_{143}(n) = \Xi(n) }
M
144
(
n
)
=
Σ
∞
(
n
)
{\displaystyle M_{144}(n) = \Sigma_\infty(n) }
M
145
(
n
)
=
f
n
(
n
↑
n
n
)
{\displaystyle M_{145}(n) = f^{n}(n \uparrow^{n} n) }
, The strongest function in the hierarchy that is actually assigned a function (being taken from LNGN 's definition).
M
145
3
(
60
)
{\displaystyle M^3_{145}(60) }
would be a number larger than LNGN if it was a valid googologism.
For
n
>
146
{\displaystyle n>146 }
(again i was too lazy to shift everything after tetration up by one, so ima roll with it, just pretend its correct, even if its correct after this point) [ ]
If 147, for example is our index, it doesnt have a assigned function, so we start defining things as FGH does (including for when
n
≥
ω
{\displaystyle n\geq \omega }
.) so the 147th function of the hierarchy is defined as n iterations of the 146th operation. Of course, diagonalization is used for ordinals so
M
ω
(
146
)
=
f
146
(
146
↑
146
146
)
{\displaystyle M_\omega(146) = f^{146}(146\uparrow^{146}146) }
. Can you believe this wasnt the function at all? That was just the hierarchy! The real function USES the hierarchy, the function being
M
(
n
)
=
M
ω
(
n
)
{\displaystyle M(n) = M_\omega(n) }
or the Map function, its equal to the omega-th function which just diagonalizes, so it does get outgrown by bigger ordinals.
2
M
(
n
)
=
M
M
(
n
)
(
n
)
{\displaystyle ^2M(n) = M^{M(n)}(n) }
having 2 layers, iteration on the map function works exactly as it does on the map hierarchy so our new "tetrational iterator" can be used in both. We can define "a pentational iterator", where "
2
←
M
(
n
)
=
M
↑
3
2
(
n
)
=
M
↑
2
M
(
n
)
(
n
)
{\displaystyle _{2 \leftarrow}M(n) = M\uparrow^32(n) = M\uparrow^2M(n)(n) }
or repeated applications of the tetrational iterator. we can define a hexational iterator, heck, why not define ARRAYS for M? Ive got a BETTER idea: Why not be able to apply the functions on the M hierarchy to M itself? And folks, this is the (current) end of the map function.