... [ ]
I thought if you multiply two integers together, you get an integer. But apparently you don't in PHP. You get a floating point number, which gets bigger and bigger and that's okay. Until you get to factorial(171), and then you get "
INF ". I don't know what "INF" is. I think it's infinity actually. But in that case, it's probably wrong, because infinity is awfully big. Bigger than factorial(171).
—Joe Armstrong
(
|
1
)
=
ψ
(
Ω
)
{\displaystyle (|1)=\psi (\Omega )}
(
1
|
1
)
=
ψ
(
Ω
)
+
1
{\displaystyle (1|1)=\psi (\Omega )+1}
(
2
|
1
)
=
ψ
(
Ω
)
+
2
{\displaystyle (2|1)=\psi (\Omega )+2}
(
3
|
1
)
=
ψ
(
Ω
)
+
ω
{\displaystyle (3|1)=\psi (\Omega )+\omega }
(
(
3
|
0
)
|
1
)
=
ψ
(
Ω
)
+
ω
ω
{\displaystyle ((3|0)|1)=\psi (\Omega )+\omega ^{\omega }}
(
(
(
3
|
0
)
|
0
)
|
1
)
=
ψ
(
Ω
)
+
ω
ω
ω
{\displaystyle (((3|0)|0)|1)=\psi (\Omega )+\omega ^{\omega ^{\omega }}}
(
(
(
(
3
|
0
)
|
0
)
|
0
)
|
1
)
=
ψ
(
Ω
)
+
ω
ω
ω
ω
{\displaystyle ((((3|0)|0)|0)|1)=\psi (\Omega )+\omega ^{\omega ^{\omega ^{\omega }}}}
(
(
|
1
)
|
1
)
=
ψ
(
Ω
)
+
ψ
(
Ω
)
{\displaystyle ((|1)|1)=\psi (\Omega )+\psi (\Omega )}
(
(
|
1
)
,
(
|
1
)
|
1
)
=
ψ
(
Ω
)
+
ψ
(
Ω
)
+
ψ
(
Ω
)
{\displaystyle ((|1),(|1)|1)=\psi (\Omega )+\psi (\Omega )+\psi (\Omega )}
(
(
|
1
)
,
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ω
{\displaystyle ((|1),(|1)|1)=\psi (\Omega )\omega }
(
(
|
1
)
,
,
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ω
2
{\displaystyle ((|1),,(|1)|1)=\psi (\Omega )\omega ^{2}}
(
(
|
1
)
,
,
,
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ω
3
{\displaystyle ((|1),,,(|1)|1)=\psi (\Omega )\omega ^{3}}
(
(
|
1
)
,
,
,
,
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ω
4
{\displaystyle ((|1),,,,(|1)|1)=\psi (\Omega )\omega ^{4}}
(
(
|
1
)
[
(
3
|
0
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ω
ω
{\displaystyle ((|1)[(3|0)](|1)|1)=\psi (\Omega )\omega ^{\omega }}
(
(
|
1
)
[
(
[
(
3
|
0
)
]
|
0
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ω
ω
ω
{\displaystyle ((|1)[([(3|0)]|0)](|1)|1)=\psi (\Omega )\omega ^{\omega ^{\omega }}}
(
(
|
1
)
[
(
[
(
[
(
3
|
0
)
]
|
0
)
]
|
0
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ω
ω
ω
ω
{\displaystyle ((|1)[([([(3|0)]|0)]|0)](|1)|1)=\psi (\Omega )\omega ^{\omega ^{\omega ^{\omega }}}}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
2
{\displaystyle ((|1)[(|1)](|1)|1)=\psi (\Omega )^{2}}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ψ
(
Ω
)
{\displaystyle ((|1)[(|1)](|1)|1)=\psi (\Omega )\psi (\Omega )}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
,
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ψ
(
Ω
)
2
{\displaystyle ((|1)[(|1)](|1)!!,!!(|1)[(|1)](|1)|1)=\psi (\Omega )\psi (\Omega )2}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
,
,
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ψ
(
Ω
)
ω
2
{\displaystyle ((|1)[(|1)](|1)!!,,!!(|1)[(|1)](|1)|1)=\psi (\Omega )\psi (\Omega )\omega ^{2}}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
,
,
,
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ψ
(
Ω
)
ω
ω
{\displaystyle ((|1)[(|1)](|1)!!,,,!!(|1)[(|1)](|1)|1)=\psi (\Omega )\psi (\Omega )\omega ^{\omega }}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
[
(
1
|
0
)
]
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ψ
(
Ω
)
ω
ω
ω
{\displaystyle ((|1)[(|1)](|1)!![(1|0)]!!(|1)[(|1)](|1)|1)=\psi (\Omega )\psi (\Omega )\omega ^{\omega ^{\omega }}}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
[
(
[
(
1
|
0
)
]
|
0
)
]
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ψ
(
Ω
)
ω
ω
ω
ω
{\displaystyle ((|1)[(|1)](|1)!![([(1|0)]|0)]!!(|1)[(|1)](|1)|1)=\psi (\Omega )\psi (\Omega )\omega ^{\omega ^{\omega ^{\omega }}}}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
[
(
|
1
)
]
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ψ
(
Ω
)
ψ
(
Ω
)
{\displaystyle ((|1)[(|1)](|1)!![(|1)]!!(|1)[(|1)](|1)|1)=\psi (\Omega )\psi (\Omega )\psi (\Omega )}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
[
(
|
1
)
]
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
3
{\displaystyle ((|1)[(|1)](|1)!![(|1)]!!(|1)[(|1)](|1)|1)=\psi (\Omega )^{3}}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
.
.
.
!
[
(
|
1
)
]
!
(
3
|
0
)
.
.
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ω
{\displaystyle ((|1)[(|1)](|1)!!...![(|1)]!^{(3|0)}..!!(|1)[(|1)](|1)|1)=\psi (\Omega )^{\omega }}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
.
.
.
!
[
(
|
1
)
]
!
(
3
,
1
|
0
)
.
.
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ω
+
1
{\displaystyle ((|1)[(|1)](|1)!!...![(|1)]!^{(3,1|0)}..!!(|1)[(|1)](|1)|1)=\psi (\Omega )^{\omega +1}}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
.
.
.
!
[
(
|
1
)
]
!
(
3
,
2
|
0
)
.
.
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ω
+
2
{\displaystyle ((|1)[(|1)](|1)!!...![(|1)]!^{(3,2|0)}..!!(|1)[(|1)](|1)|1)=\psi (\Omega )^{\omega +2}}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
.
.
.
!
[
(
|
1
)
]
!
(
3
,
3
|
0
)
.
.
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ω
2
{\displaystyle ((|1)[(|1)](|1)!!...![(|1)]!^{(3,3|0)}..!!(|1)[(|1)](|1)|1)=\psi (\Omega )^{\omega 2}}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
.
.
.
!
[
(
|
1
)
]
!
(
3
,
,
3
|
0
)
.
.
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ω
2
{\displaystyle ((|1)[(|1)](|1)!!...![(|1)]!^{(3,,3|0)}..!!(|1)[(|1)](|1)|1)=\psi (\Omega )^{\omega ^{2}}}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
.
.
.
!
[
(
|
1
)
]
!
(
3
,
,
,
3
|
0
)
.
.
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ω
3
{\displaystyle ((|1)[(|1)](|1)!!...![(|1)]!^{(3,,,3|0)}..!!(|1)[(|1)](|1)|1)=\psi (\Omega )^{\omega ^{3}}}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
.
.
.
!
[
(
|
1
)
]
!
(
3
,
,
,
3
|
0
)
.
.
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ω
ω
{\displaystyle ((|1)[(|1)](|1)!!...![(|1)]!^{(3,,,3|0)}..!!(|1)[(|1)](|1)|1)=\psi (\Omega )^{\omega ^{\omega }}}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
.
.
.
!
[
(
|
1
)
]
!
(
3
(
(
3
,
,
,
3
|
0
)
)
3
|
0
)
.
.
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ω
ω
ω
{\displaystyle ((|1)[(|1)](|1)!!...![(|1)]!^{(3((3,,,3|0))3|0)}..!!(|1)[(|1)](|1)|1)=\psi (\Omega )^{\omega ^{\omega ^{\omega }}}}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
.
.
.
!
[
(
|
1
)
]
!
(
3
(
(
3
(
3
,
,
,
3
|
0
)
3
|
0
)
)
3
|
0
)
.
.
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ω
ω
ω
ω
{\displaystyle ((|1)[(|1)](|1)!!...![(|1)]!^{(3((3(3,,,3|0)3|0))3|0)}..!!(|1)[(|1)](|1)|1)=\psi (\Omega )^{\omega ^{\omega ^{\omega ^{\omega }}}}}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
.
.
.
!
[
(
|
1
)
]
!
[
(
|
1
)
]
.
.
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ψ
(
Ω
)
{\displaystyle ((|1)[(|1)](|1)!!...![(|1)]!^{[(|1)]}..!!(|1)[(|1)](|1)|1)=\psi (\Omega )^{\psi (\Omega )}}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
.
.
.
!
[
(
|
1
)
]
!
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
.
.
.
!
[
(
|
1
)
]
!
[
(
|
1
)
]
.
.
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
.
.
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ψ
(
Ω
)
ψ
(
Ω
)
{\displaystyle ((|1)[(|1)](|1)!!...![(|1)]!^{((|1)[(|1)](|1)!!...![(|1)]!^{[(|1)]}..!!(|1)[(|1)](|1)|1)}..!!(|1)[(|1)](|1)|1)=\psi (\Omega )^{\psi (\Omega )^{\psi (\Omega )}}}
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
.
.
.
!
[
(
|
1
)
]
!
(
(
|
1
)
[
(
|
1
)
]
(
|
1
)
!
!
.
.
.
!
[
(
|
1
)
]
!
[
(
|
1
)
]
.
.
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
.
.
!
!
(
|
1
)
[
(
|
1
)
]
(
|
1
)
|
1
)
=
ψ
(
Ω
)
ψ
(
Ω
)
ψ
(
Ω
)
{\displaystyle ((|1)[(|1)](|1)!!...![(|1)]!^{((|1)[(|1)](|1)!!...![(|1)]!^{[(|1)]}..!!(|1)[(|1)](|1)|1)}..!!(|1)[(|1)](|1)|1)=\psi (\Omega )^{\psi (\Omega )^{\psi (\Omega )}}}
...