Definitions [ ]
If (ex.)
{
α
,
β
,
N
,
α
%
}
,
t
h
e
n
=
(
α
↑
.
.
.
(
β
↑
′
s
)
.
.
.
↑
N
)
↑
α
%
{\displaystyle \{{\alpha },\beta ,\mathbb {N} ,\alpha \%\},then=(\alpha \uparrow ...(\beta \uparrow 's)...\uparrow \mathbb {N} )\uparrow \alpha \%}
{
α
,
β
,
[
N
]
,
α
$
}
≡
{
α
,
α
,
N
,
β
%
}
,
%
,
$
≃
0.
(
N
)
↑
α
{\displaystyle \{\alpha ,\beta ,[\mathbb {N} ],\alpha \$\}\equiv \{\alpha ,\alpha ,\mathbb {N} ,\beta \%\},\%,\$\simeq 0.(\mathbb {N} )\uparrow \alpha }
{
10
,
δ
,
[
5
]
,
7
}
=
10
{
{
{
{
{
7
}
}
}
}
}
δ
,
δ
=
α
%
/
$
(
o
p
t
.
)
{\displaystyle \{10,\delta ,[5],7\}=10\{\{\{\{\{7\}\}\}\}\}\delta ,\delta =\alpha \%/\$~(opt.)}
N
{\displaystyle \mathbb{N}}
must have only finite value
{10^100, 10^100, [10^10^10^100&], 10$} (Limit of GEAF) is the point where the lightstein's rule (in finite numbers) gets unstable, going further from this point will not result in a valid value