I decided to create some hydra machines.
- Note: current Kirby Paris results can be found in my subpages, I wrote this post to get attention.
Kirby Paris hydra
79 states, 2 colors
Input: Multiplier in the form of 111111...111111, where 2n 1s is a multiplier of n. Then two spaces. Then hydra without rightmost )'s, where a ( is changed to _1 and a ) is changed to 11.
0 1 1 r 0 0 _ _ l 1 1 1 _ r 1 1 _ _ r 3 2 _ 1 r 17 3 _ _ r 4 4 _ _ r 60 4 1 1 r halt 5 1 1 r 61 5 _ _ l 6 6 _ _ l 7 6 1 1 l 8 7 1 _ l 7 7 _ 1 r 32 8 1 _ l 9 8 _ _ l 77 9 1 _ r 10 9 _ _ r 18 10 _ _ r 11 11 1 1 r 11 11 _ _ r 12 12 1 1 r 11 12 _ _ r 13 13 1 1 r 13 13 _ 1 l 14 14 1 1 l 14 14 _ _ l 27 15 1 1 l 27 15 _ _ l 16 16 1 1 l 27 16 _ 1 r 32 17 1 1 r 17 17 _ _ r 72 18 _ _ r 19 19 1 1 r 19 19 _ _ r 20 20 1 1 r 19 20 _ _ r 21 21 1 1 r 21 21 _ _ l 22 22 1 _ l 23 22 _ _ l 34 23 1 1 l 23 23 _ _ l 24 24 _ _ l 25 25 1 1 l 28 25 _ _ l 29 26 1 1 l 26 26 _ 1 l 31 27 _ _ l 15 27 1 1 l 15 28 1 1 l 25 28 _ _ l 25 29 _ _ r 30 29 1 1 l 25 30 _ 1 l 33 31 _ 1 r 0 32 _ 1 l 6 33 _ _ l 8 34 _ _ l 35 34 1 1 l 35 35 1 1 l 34 35 _ _ l 36 36 _ _ r 37 36 1 1 l 35 37 _ 1 r 40 37 1 _ r 49 38 1 1 r 38 38 _ _ r 39 39 _ _ r 42 39 1 1 r 38 40 _ _ r 41 40 1 _ r 37 41 1 _ r 38 41 _ _ l 63 42 1 1 r 42 42 _ _ r 43 43 1 1 r 42 43 _ 1 l 44 44 _ _ l 45 44 1 1 l 44 45 _ _ l 47 45 1 1 l 44 46 1 1 l 47 46 _ _ l 48 47 1 1 l 46 47 _ _ l 46 48 1 1 l 46 48 _ _ r 37 49 1 1 r 49 49 _ _ r 50 50 _ _ r 52 50 1 1 r 49 51 _ _ r 66 51 1 1 r 51 52 1 1 r 52 52 _ _ r 53 53 1 1 r 52 53 _ 1 l 59 54 _ _ l 55 54 1 1 l 54 55 _ _ l 57 55 1 1 l 54 56 1 1 l 57 56 _ _ l 58 57 1 1 l 56 57 _ _ l 56 58 1 1 l 56 58 _ 1 r 37 59 _ 1 l 55 59 1 1 l 67 60 _ _ r halt 60 1 1 r 61 61 1 1 r 61 61 _ _ r 5 62 1 1 l 63 62 _ _ l 64 63 1 1 l 62 63 _ _ l 62 64 _ _ l 65 64 1 1 l 62 65 1 1 l 65 65 _ 1 l 59 66 _ _ * 73 66 1 1 r 51 67 1 _ r 68 67 _ 1 l 2 68 1 1 r 68 68 _ _ r 71 69 1 1 r 69 69 _ _ r 70 70 1 1 r 69 70 _ _ * 37 71 _ _ r 69 72 _ _ r 51 73 _ 1 l 74 74 _ _ l 75 74 1 1 l 74 75 _ _ l 76 75 1 1 l 74 76 1 1 l 74 76 _ _ l 0 77 _ _ l 78 78 _ 1 l 26 78 1 1 l 26
34 states, 3 colors
2 states improvement over Peng's machine, yay!
Note that although I built this machine from scratch, it uses Peng's idea to eliminate the last )'s.
Input: Multiplier in the form of (((...(((, then a space, then a hydra without rightmost )'s.
0 ( ( r 0 0 _ _ l 24 1 _ _ r halt 1 ( ( r 2 2 ( ( r 2 2 ) ) r 2 2 _ _ l 13 3 ) _ r 4 3 _ _ l 25 3 ( _ r 8 4 ( ( r 4 4 ) ) r 4 4 _ _ r 5 5 ( ( r 5 5 _ ( l 6 6 ( ( l 6 6 _ _ l 7 7 ( ( l 7 7 ) ) l 7 7 _ ) l 3 8 ( ( r 8 8 ) ) r 8 8 _ _ r 9 9 ( ( r 9 9 _ _ l 10 10 ( _ l 11 10 _ ) l 14 11 ( ( l 11 11 _ _ l 12 12 ( ( l 12 12 ) ) l 12 12 _ ( l 3 13 ) _ l 13 13 ( _ l 3 14 ( ( l 14 14 ) ) l 14 14 _ ( r 15 15 ( _ r 16 15 ) _ r 20 15 _ _ l 26 16 ( ( r 16 16 ) ) r 16 16 _ _ r 17 17 ( ( r 17 17 ) ) r 17 17 _ ( l 18 18 ( ( l 18 18 ) ) l 18 18 _ _ l 19 19 ( ( l 19 19 ) ) l 19 19 _ ( r 15 20 ) ) r 20 20 ( ( r 20 20 _ _ r 21 21 ( ( r 21 21 ) ) r 21 21 _ ) l 22 22 ( ( l 22 22 ) ) l 22 22 _ _ l 23 23 ( ( l 23 23 ) ) l 23 23 _ ) r 15 24 ( ) r 24 24 _ _ r 1 25 ( ( l 25 25 ) ( l 25 25 _ ( r 0 26 ( ( l 26 26 ) ) l 26 26 _ _ l 27 27 ( ( l 27 27 ) ( l 28 28 ( ) r 29 28 _ _ r 31 29 ( ( r 29 29 _ _ r 30 30 ( ( r 30 30 ) ) r 30 30 _ ( r 15 31 ( ( r 31 31 _ _ r 32 32 ( ( r 32 32 ) ) r 32 32 _ ( l 33 33 ( ( l 33 33 ) ) l 33 33 _ _ l 25
28 states, 4 colors
No states 9, 10, 11, 12, 19, 23 thanks to a smart tric with a fourth color.
Input: Multiplier in the form of (((...(((, then a space, then a hydra without rightmost )'s.
0 ( ( r 0 0 _ _ l 24 1 _ _ r halt 1 ( ( r 2 2 ( ( r 2 2 ) ) r 2 2 _ _ l 13 3 ) _ r 4 3 _ _ l 25 3 ( _ r 6 4 ( ( r 4 4 ) ) r 4 4 x x r 4 4 _ x l 5 5 x x l 5 5 ( ( l 5 5 ) ) l 5 5 _ ) l 3 6 ( ( r 6 6 ) ) r 6 6 x x r 6 6 _ _ l 7 7 x _ l 8 7 _ _ r 13 7 ) ) r 13 8 x x l 8 8 ( ( l 8 8 ) ) l 8 8 _ ( l 3 13 _ ) l 14 13 ) _ l 13 13 ( _ l 3 14 ( ( l 14 14 ) ) l 14 14 _ ( r 15 15 ( x r 16 15 ) x r 20 15 _ _ l 26 16 ( ( r 16 16 ) ) r 16 16 _ _ r 17 17 ( ( r 17 17 ) ) r 17 17 _ ( l 18 18 ( ( l 18 18 ) ) l 18 18 _ _ l 18 18 x ( r 15 20 ) ) r 20 20 ( ( r 20 20 _ _ r 21 21 ( ( r 21 21 ) ) r 21 21 _ ) l 22 22 ( ( l 22 22 ) ) l 22 22 _ _ l 22 22 x ) r 15 24 ( ) r 24 24 _ _ r 1 25 ( ( l 25 25 ) ( l 25 25 _ ( r 0 26 ( ( l 26 26 ) ) l 26 26 _ _ l 27 27 ( ( l 27 27 ) ( l 28 28 ( ) r 29 28 _ _ r 31 29 ( ( r 29 29 _ _ r 30 30 ( ( r 30 30 ) ) r 30 30 _ ( r 15 31 ( ( r 31 31 _ _ r 32 32 ( ( r 32 32 ) ) r 32 32 _ ( l 33 33 ( ( l 33 33 ) ) l 33 33 _ _ l 25
17 states, 5 colors
Unbelievable! I was able to reduce 11 states more: 1, 15, 17, 21, 22, 24, 25, 27, 30, 31, 32!
Input: Multiplier in the form of xxxx...xxxx, then a hydra without rightmost )'s.
0 x x r 0 0 ( ( l 2 0 _ _ r halt 2 x y r 2 2 ( ( r 2 2 ) ) r 2 2 y ( r 2 2 _ _ l 13 3 ) _ r 4 3 y x l 33 3 ( _ r 6 4 ( ( r 4 4 ) ) r 4 4 x x r 4 4 _ x l 5 5 x x l 5 5 ( ( l 5 5 ) ) l 5 5 _ ) l 3 6 ( ( r 6 6 ) ) r 6 6 x x r 6 6 _ _ l 7 7 x _ l 8 7 _ _ r 13 7 ) ) r 13 8 x x l 8 8 ( ( l 8 8 ) ) l 8 8 _ ( l 3 13 _ ) r 26 13 ) _ l 13 13 ( _ l 3 14 ( ( l 14 14 ) ) l 14 14 _ ( r 28 16 ( ( r 16 16 ) ) r 16 16 y y r 16 16 _ ( l 18 18 ( ( l 18 18 ) ) l 18 18 y y l 18 18 x ( r 28 18 _ ) r 28 20 ) ) r 20 20 ( ( r 20 20 y y r 20 20 _ ) l 18 26 ( ( l 26 26 ) ) l 26 26 x x l 26 26 y x l 28 26 _ y l 14 28 x y r 29 28 _ x r 0 28 ( x r 16 28 ) _ r 20 28 y y l 26 29 x x r 29 29 ( ( r 29 29 ) ) r 29 29 y _ r 29 29 _ y l 14 33 ( ( l 33 33 ) ) l 33 33 x x l 33 33 y x l 33 33 _ x r 0
16 states, 7 colors
Reduced state 5 beacause of state reduction using temporary color change.
0 x x r 0 0 ( ( l 2 0 _ _ r halt 2 x y r 2 2 ( ( r 2 2 ) ) r 2 2 y ( r 2 2 _ _ l 13 3 ) _ r 4 3 y x l 33 3 ( _ r 6 3 x x l 3 3 [ ( l 3 3 ] ) l 3 3 _ ) l 3 4 ( [ r 4 4 ) ] r 4 4 x x r 4 4 _ x l 3 6 ( ( r 6 6 ) ) r 6 6 x x r 6 6 _ _ l 7 7 x _ l 8 7 _ _ r 13 7 ) ) r 13 8 x x l 8 8 ( ( l 8 8 ) ) l 8 8 _ ( l 3 13 _ ) r 26 13 ) _ l 13 13 ( _ l 3 14 ( ( l 14 14 ) ) l 14 14 _ ( r 28 16 ( ( r 16 16 ) ) r 16 16 y y r 16 16 _ ( l 18 18 ( ( l 18 18 ) ) l 18 18 y y l 18 18 x ( r 28 18 _ ) r 28 20 ) ) r 20 20 ( ( r 20 20 y y r 20 20 _ ) l 18 26 ( ( l 26 26 ) ) l 26 26 x x l 26 26 y x l 28 26 _ y l 14 28 x y r 29 28 _ x r 0 28 ( x r 16 28 ) _ r 20 28 y y l 26 29 x x r 29 29 ( ( r 29 29 ) ) r 29 29 y _ r 29 29 _ y l 14 33 ( ( l 33 33 ) ) l 33 33 x x l 33 33 y x l 33 33 _ x r 0
15 states, 8 colors
Reduced state 18 beacause of state reduction using temporary color change.
0 x x r 0 0 ( ( l 2 0 _ _ r halt 2 x y r 2 2 ( ( r 2 2 ) ) r 2 2 y ( r 2 2 _ _ l 13 3 ) _ r 4 3 y x l 33 3 ( _ r 6 3 x x l 3 3 [ ( l 3 3 ] ) l 3 3 _ ) l 3 4 ( [ r 4 4 ) ] r 4 4 x x r 4 4 _ x l 3 6 ( ( r 6 6 ) ) r 6 6 x x r 6 6 _ _ l 7 7 x _ l 8 7 _ _ r 13 7 ) ) r 13 8 x x l 8 8 ( ( l 8 8 ) ) l 8 8 _ ( l 3 13 _ ) r 26 13 ) _ l 13 13 ( _ l 3 14 ( ( l 14 14 ) ) l 14 14 _ ( r 28 14 [ ( l 14 14 ] ) l 14 14 y y l 14 14 x ( r 28 14 c ) r 28 16 ( [ r 16 16 ) ] r 16 16 y y r 16 16 _ ( l 14 20 ) ] r 20 20 ( [ r 20 20 y y r 20 20 _ ) l 14 26 ( ( l 26 26 ) ) l 26 26 x x l 26 26 y x l 28 26 _ y l 14 28 x y r 29 28 _ x r 0 28 ( x r 16 28 ) c r 20 28 y y l 26 29 x x r 29 29 ( ( r 29 29 ) ) r 29 29 y _ r 29 29 _ y l 14 33 ( ( l 33 33 ) ) l 33 33 x x l 33 33 y x l 33 33 _ x r 0
Bounds using Kirby-Paris machines
\(\Sigma(85,2)\)
The needed input is 11___1(_1)n for some n to create a big output. The head must be on one of the first ones.
The following machine outputs 1111_11(_1)1909 where the head is on the fifth one.
0 _ 1 l 1 0 1 1 r 2 1 _ _ r 0 1 1 _ r 3 2 _ 1 r 0 2 1 1 l halt 3 _ 1 r 1 3 1 1 l 4 4 _ _ l 3 4 1 _ l 1
Using
5 1 _ l 5 5 _ _ l 6 6 1 _ l 7 7 1 1 l 7 7 _ 1 r M0
This will be transformed to 1111___1(_1)1909
State 6 can be reduced into the main machine.
\(\Sigma(85,2) > f_{\varepsilon_0}(1907)\)
\(\Sigma(37,3)\)
Construction is similiar to Cloudy's in here.
\(\Sigma(37,3) > f_{\varepsilon_0}(373676378)\)
\(\Sigma(36,3)\)
Using 2 state 3 Busy Beaver.
\(\Sigma(36,3) > f_{\varepsilon_0}(7)\)
\(\Sigma(31,4)\)
Construction is similiar to Cloudy's in here.
\(\Sigma(31,4) > f_{\varepsilon_0}(373676378)\)
\(\Sigma(19,5)\)
0 _ 1 r 1 0 1 2 l 0 0 2 1 r 0 0 3 2 l 1 0 4 2 l 0 1 _ _ l 0 1 1 2 r 1 1 2 3 r 1 1 3 4 r 0 1 4 1 l M28
The best known 2 state 5 color machine. It outputs
_122222...2222 (~1.7*10^352 2's) ^
Let 2 be ( and 1 be x, it outputs what we want.
\(\Sigma(19,5) > f_{\varepsilon_0}(1.7\cdot10^{352})\)
\(\Sigma(18,7)\)
\(\Sigma(18,7) > f_{\varepsilon_0}(1.7\cdot10^{352})\)
\(\Sigma(17,8)\)
\(\Sigma(17,8) > f_{\varepsilon_0}(1.7\cdot10^{352})\)
(0,1) game
92 states, 5 colors
Note that although I built this machine from scratch, it uses Peng's idea to eliminate the last )'s.
Input: Multiplier in the form of (((...(((, then a space, then a hydra without rightmost )'s and ]'s.
Note: no states 49, 50, 54, 55.
0 ( ( r 0 0 _ _ l 3 1 _ _ r halt 1 ( ( r 2 2 ( ( r 2 2 ) ) r 2 2 [ [ r 2 2 ] ] r 2 2 _ _ l 4 3 ( ) r 3 3 _ _ r 1 4 ) _ l 4 4 ( _ l 5 4 [ _ l 58 4 ] _ l 4 4 _ [ r 26 5 ( _ r 6 5 [ _ r 11 5 ) _ r 16 5 ] _ r 20 5 _ _ l 57 6 ( ( r 6 6 [ [ r 6 6 ) ) r 6 6 ] ] r 6 6 _ _ r 7 7 ( ( r 7 7 _ _ l 8 8 ( _ l 9 8 _ ) l 24 9 ( ( l 9 9 _ _ l 10 10 ( ( l 10 10 ) ) l 10 10 [ [ l 10 10 ] ] l 10 10 _ ( l 5 11 ( ( r 11 11 [ [ r 11 11 ) ) r 11 11 ] ] r 11 11 _ _ r 12 12 ( ( r 12 12 _ _ l 13 13 ( _ l 14 13 _ ] l 25 14 ( ( l 14 14 _ _ l 15 15 ( ( l 15 15 ) ) l 15 15 [ [ l 15 15 ] ] l 15 15 _ [ l 5 16 ( ( r 16 16 [ [ r 16 16 ) ) r 16 16 ] ] r 16 16 _ _ r 17 17 ( ( r 17 17 _ ( l 18 18 ( ( l 18 18 _ _ l 19 19 ( ( l 19 19 ) ) l 19 19 [ [ l 19 19 ] ] l 19 19 _ ) l 5 20 ( ( r 20 20 [ [ r 20 20 ) ) r 20 20 ] ] r 20 20 _ _ r 21 21 ( ( r 21 21 _ ( l 22 22 ( ( l 22 22 _ _ l 23 23 ( ( l 23 23 ) ) l 23 23 [ [ l 23 23 ] ] l 23 23 _ ] l 5 24 ( ( l 24 24 ) ) l 24 24 [ [ l 24 24 ] ] l 24 24 _ ( r 26 25 ( ( l 25 25 ) ) l 25 25 [ [ l 25 25 ] ] l 25 25 _ [ r 26 26 ( _ r 27 26 ) _ r 31 26 [ _ r 35 26 ] _ r 39 26 _ _ l 43 27 ( ( r 27 27 ) ) r 27 27 [ [ r 27 27 ] ] r 27 27 _ _ r 28 28 ( ( r 28 28 ) ) r 28 28 [ [ r 28 28 ] ] r 28 28 _ ( l 29 29 ( ( l 29 29 ) ) l 29 29 [ [ l 29 29 ] ] l 29 29 _ _ l 30 30 ( ( l 30 30 ) ) l 30 30 [ [ l 30 30 ] ] l 30 30 _ ( r 26 31 ( ( r 31 31 ) ) r 31 31 [ [ r 31 31 ] ] r 31 31 _ _ r 32 32 ( ( r 32 32 ) ) r 32 32 [ [ r 32 32 ] ] r 32 32 _ ) l 33 33 ( ( l 33 33 ) ) l 33 33 [ [ l 33 33 ] ] l 33 33 _ _ l 34 34 ( ( l 34 34 ) ) l 34 34 [ [ l 34 34 ] ] l 34 34 _ ) r 26 35 ( ( r 35 35 ) ) r 35 35 [ [ r 35 35 ] ] r 35 35 _ _ r 36 36 ( ( r 36 36 ) ) r 36 36 [ [ r 36 36 ] ] r 36 36 _ [ l 37 37 ( ( l 37 37 ) ) l 37 37 [ [ l 37 37 ] ] l 37 37 _ _ l 38 38 ( ( l 38 38 ) ) l 38 38 [ [ l 38 38 ] ] l 38 38 _ [ r 26 39 ( ( r 39 39 ) ) r 39 39 [ [ r 39 39 ] ] r 39 39 _ _ r 40 40 ( ( r 40 40 ) ) r 40 40 [ [ r 40 40 ] ] r 40 40 _ ] l 41 41 ( ( l 41 41 ) ) l 41 41 [ [ l 41 41 ] ] l 41 41 _ _ l 42 42 ( ( l 42 42 ) ) l 42 42 [ [ l 42 42 ] ] l 42 42 _ ] r 26 43 ( ( l 43 43 ) ) l 43 43 [ [ l 43 43 ] ] l 43 43 _ _ l 44 44 ( ( l 44 44 ) ( l 45 44 _ [ l 56 45 _ _ r 51 45 ( ) r 46 46 ( ( r 46 46 _ _ r 47 47 ( ( r 47 47 ) ) r 47 47 [ [ r 47 47 ] ] r 47 47 _ _ l 48 48 ) ) r 48 48 ] ] r 4 48 _ ( r 26 51 ( ( r 51 51 _ _ r 52 52 ( ( r 52 52 ) ) r 52 52 [ [ r 52 52 ] ] r 52 52 _ _ l 53 53 ) ) r 53 53 ] ] r 44 53 _ ( l 56 56 ( ( l 56 56 ) ) l 56 56 [ [ l 56 56 ] ] l 56 56 _ _ l 57 57 ( ( l 57 57 ) ( l 57 57 _ ( r 0 58 ( _ r 59 58 ) _ r 64 58 [ _ r 68 58 ] _ r 73 59 ( ( r 59 59 [ [ r 59 59 ) ) r 59 59 ] ] r 59 59 _ _ r 60 60 ( ( r 60 60 _ _ l 61 61 ( _ l 62 61 _ _ l 77 62 ( ( l 62 62 _ _ l 63 63 ( ( l 63 63 ) ) l 63 63 ] ] l 63 63 [ [ l 63 63 _ ( l 58 64 ( ( r 64 64 [ [ r 64 64 ) ) r 64 64 ] ] r 64 64 _ _ r 65 65 ( ( r 65 65 _ ( l 66 66 ( ( l 66 66 _ _ l 67 67 ( ( l 67 67 ) ) l 67 67 ] ] l 67 67 [ [ l 67 67 _ ) l 58 68 ( ( r 68 68 [ [ r 68 68 ) ) r 68 68 ] ] r 68 68 _ _ r 69 69 ( ( r 69 69 _ _ l 70 70 ( _ l 71 70 _ _ l 72 71 ( ( l 71 71 _ _ l 72 72 ( ( l 72 72 ) ) l 72 72 ] ] l 72 72 [ [ l 72 72 _ [ l 58 73 ( ( r 73 73 [ [ r 73 73 ) ) r 73 73 ] ] r 73 73 _ _ r 74 74 ( ( r 74 74 _ ( l 75 75 ( ( l 75 75 _ _ l 76 76 ( ( l 76 76 ) ) l 76 76 ] ] l 76 76 [ [ l 76 76 _ ] l 58 77 ( ( l 77 77 ) ) l 77 77 [ [ l 77 77 ] ] l 77 77 _ ( r 78 78 ( _ r 79 78 ) _ r 83 78 [ _ r 87 78 ] _ r 91 78 _ ( r 95 79 ( ( r 79 79 ) ) r 79 79 [ [ r 79 79 ] ] r 79 79 _ _ r 81 80 ( ( l 80 80 ) ) l 80 80 [ [ l 80 80 ] ] l 80 80 _ ( r 78 81 ( ( r 81 81 ) ) r 81 81 [ [ r 81 81 ] ] r 81 81 _ ( l 82 82 ( ( l 82 82 ) ) l 82 82 [ [ l 82 82 ] ] l 82 82 _ _ l 80 83 ( ( r 83 83 ) ) r 83 83 [ [ r 83 83 ] ] r 83 83 _ _ r 85 84 ( ( l 84 84 ) ) l 84 84 [ [ l 84 84 ] ] l 84 84 _ ) r 78 85 ( ( r 85 85 ) ) r 85 85 [ [ r 85 85 ] ] r 85 85 _ ) l 86 86 ( ( l 86 86 ) ) l 86 86 [ [ l 86 86 ] ] l 86 86 _ _ l 84 87 ( ( r 87 87 ) ) r 87 87 [ [ r 87 87 ] ] r 87 87 _ _ r 89 88 ( ( l 88 88 ) ) l 88 88 [ [ l 88 88 ] ] l 88 88 _ [ r 78 89 ( ( r 89 89 ) ) r 89 89 [ [ r 89 89 ] ] r 89 89 _ [ l 90 90 ( ( l 90 90 ) ) l 90 90 [ [ l 90 90 ] ] l 90 90 _ _ l 88 91 ( ( r 91 91 ) ) r 91 91 [ [ r 91 91 ] ] r 91 91 _ _ r 93 92 ( ( l 92 92 ) ) l 92 92 [ [ l 92 92 ] ] l 92 92 _ ] r 78 93 ( ( r 93 93 ) ) r 93 93 [ [ r 93 93 ] ] r 93 93 _ ] l 94 94 ( ( l 94 94 ) ) l 94 94 [ [ l 94 94 ] ] l 94 94 _ _ l 92 95 ( ( r 95 95 ) ) r 95 95 [ [ r 95 95 ] ] r 95 95 _ ( l 56
59 states, 6 colors
33 states reduced: 7, 9, 12, 14, 17, 18, 21, 22, 28, 30, 32, 34, 36, 38, 40, 42, 46, 60, 62, 65, 66, 69, 71, 74, 75, 81, 82, 85, 86, 89, 90, 93, 94.
Input: Multiplier in the form of (((...(((, then a space, then a hydra without rightmost )'s and ]'s.
0 ( ( r 0 0 _ _ l 3 1 _ _ r halt 1 ( ( r 2 2 ( ( r 2 2 ) ) r 2 2 [ [ r 2 2 x _ l 4 2 ] ] r 2 2 _ _ l 4 3 ( ) r 3 3 _ _ r 1 4 ) _ l 4 4 ( _ l 5 4 [ _ l 58 4 ] _ l 4 4 _ [ r 26 5 ( _ r 6 5 [ _ r 11 5 ) _ r 16 5 ] _ r 20 5 _ _ l 57 6 ( ( r 6 6 [ [ r 6 6 ) ) r 6 6 ] ] r 6 6 x x r 6 6 _ _ l 8 8 x _ l 10 8 ( ( r 26 8 ) ) r 26 8 [ [ r 26 8 ] ] r 26 8 _ _ r 26 10 x x l 10 10 ( ( l 10 10 ) ) l 10 10 [ [ l 10 10 ] ] l 10 10 _ ( l 5 11 ( ( r 11 11 [ [ r 11 11 ) ) r 11 11 ] ] r 11 11 x x r 11 11 _ _ l 13 13 _ x l 25 13 x _ l 15 13 ) ) r 78 13 [ [ r 78 13 ] ] r 78 13 ( ( r 78 15 ( ( l 15 15 ) ) l 15 15 [ [ l 15 15 ] ] l 15 15 _ [ l 5 16 ( ( r 16 16 [ [ r 16 16 ) ) r 16 16 ] ] r 16 16 x x r 16 16 _ x l 19 19 x x l 19 19 ( ( l 19 19 ) ) l 19 19 [ [ l 19 19 ] ] l 19 19 _ ) l 5 20 ( ( r 20 20 [ [ r 20 20 ) ) r 20 20 ] ] r 20 20 _ x l 22 20 x x l 23 23 x x l 23 23 ( ( l 23 23 ) ) l 23 23 [ [ l 23 23 ] ] l 23 23 _ ] l 5 24 ( ( l 24 24 ) ) l 24 24 [ [ l 24 24 ] ] l 24 24 _ ( r 26 25 ( ( l 25 25 ) ) l 25 25 [ [ l 25 25 ] ] l 25 25 _ [ r 26 26 ( _ r 27 26 ) _ r 31 26 [ _ r 35 26 ] _ r 39 26 x x r 51 26 _ ) r 48 27 ( ( r 27 27 ) ) r 27 27 [ [ r 27 27 ] ] r 27 27 x x r 27 27 _ ( l 29 29 ( ( l 29 29 ) ) l 29 29 [ [ l 29 29 ] ] l 29 29 x x l 29 29 _ ( r 26 31 ( ( r 31 31 ) ) r 31 31 [ [ r 31 31 ] ] r 31 31 x x r 31 31 _ ) l 33 33 ( ( l 33 33 ) ) l 33 33 [ [ l 33 33 ] ] l 33 33 x x l 33 33 _ ) r 26 35 ( ( r 35 35 ) ) r 35 35 [ [ r 35 35 ] ] r 35 35 x x r 35 35 _ [ l 37 37 ( ( l 37 37 ) ) l 37 37 [ [ l 37 37 ] ] l 37 37 x x l 37 37 _ [ r 26 39 ( ( r 39 39 ) ) r 39 39 [ [ r 39 39 ] ] r 39 39 x x r 39 39 _ ] l 41 41 ( ( l 41 41 ) ) l 41 41 [ [ l 41 41 ] ] l 41 41 x x l 41 41 _ ] r 26 43 ( ( l 43 43 ) ) l 43 43 [ [ l 43 43 ] ] l 43 43 x x l 43 43 _ _ l 44 44 ( ( l 44 44 ) ( l 45 44 _ [ l 56 45 _ _ r 52 45 ( ) r 47 47 ( ( r 47 47 ) ) r 47 47 [ [ r 47 47 ] ] r 47 47 _ _ r 47 47 x x l 48 48 ) ) r 48 48 ] ] r 4 48 x ( r 26 48 _ x l 24 51 ( ( r 51 51 ) ) r 51 51 [ [ r 51 51 ] ] r 51 51 _ x l 43 52 _ _ r 52 52 ( ( r 52 52 ) ) r 52 52 [ [ r 52 52 ] ] r 52 52 x _ l 53 53 ) ) r 53 53 ] ] r 44 53 _ ( l 56 56 ( ( l 56 56 ) ) l 56 56 [ [ l 56 56 ] ] l 56 56 _ _ l 57 57 ( ( l 57 57 ) ( l 57 57 _ ( r 0 58 ( _ r 59 58 ) _ r 64 58 [ _ r 68 58 ] _ r 73 58 _ x l 77 59 ( ( r 59 59 [ [ r 59 59 ) ) r 59 59 ] ] r 59 59 x x r 59 59 _ _ l 61 61 x _ l 63 61 ( ( r 58 61 ) ) r 58 61 [ [ r 58 61 ] ] r 58 61 _ _ r 58 63 x x l 63 63 ( ( l 63 63 ) ) l 63 63 ] ] l 63 63 [ [ l 63 63 _ ( l 58 64 ( ( r 64 64 [ [ r 64 64 ) ) r 64 64 ] ] r 64 64 x x r 64 64 _ x l 67 67 x x l 67 67 ( ( l 67 67 ) ) l 67 67 ] ] l 67 67 [ [ l 67 67 _ ) l 58 68 ( ( r 68 68 [ [ r 68 68 ) ) r 68 68 ] ] r 68 68 x x r 68 68 _ _ l 70 70 x _ l 72 70 _ _ l 72 72 x x l 72 72 ( ( l 72 72 ) ) l 72 72 ] ] l 72 72 [ [ l 72 72 _ [ l 58 73 ( ( r 73 73 [ [ r 73 73 ) ) r 73 73 ] ] r 73 73 x x r 73 73 _ x l 76 76 x x l 76 76 ( ( l 76 76 ) ) l 76 76 ] ] l 76 76 [ [ l 76 76 _ ] l 58 77 ( ( l 77 77 ) ) l 77 77 [ [ l 77 77 ] ] l 77 77 _ ( r 78 78 ( _ r 79 78 ) _ r 83 78 [ _ r 87 78 ] _ r 91 78 x ( r 95 78 _ ] r 13 79 ( ( r 79 79 ) ) r 79 79 [ [ r 79 79 ] ] r 79 79 x x r 79 79 _ ( l 80 80 ( ( l 80 80 ) ) l 80 80 [ [ l 80 80 ] ] l 80 80 x x l 80 80 _ ( r 78 83 ( ( r 83 83 ) ) r 83 83 [ [ r 83 83 ] ] r 83 83 x x r 83 83 _ ) l 84 84 ( ( l 84 84 ) ) l 84 84 x x l 84 84 [ [ l 84 84 ] ] l 84 84 _ ) r 78 87 ( ( r 87 87 ) ) r 87 87 x x r 87 87 [ [ r 87 87 ] ] r 87 87 _ [ l 88 88 ( ( l 88 88 ) ) l 88 88 [ [ l 88 88 x x l 88 88 ] ] l 88 88 _ [ r 78 91 ( ( r 91 91 ) ) r 91 91 x x r 91 91 [ [ r 91 91 ] ] r 91 91 _ ] l 92 92 ( ( l 92 92 ) ) l 92 92 x x l 92 92 [ [ l 92 92 ] ] l 92 92 _ ] r 78 95 ( ( r 95 95 ) ) r 95 95 [ [ r 95 95 ] ] r 95 95 _ ( l 56
44 states, 7 colors
15 states reduced: 1, 3, 10, 20, 23, 25, 33, 41, 45, 57, 72, 73, 76, 84, 92.
Input: Multiplier in the form of yyy...yyy, then a hydra without rightmost )'s and ]'s.
0 y y r 0 0 ( ( l 2 0 _ _ r halt 2 ( ( r 2 2 ) ) r 2 2 [ [ r 2 2 x _ l 4 2 ] ] r 2 2 _ _ l 4 2 y x r 2 4 ) _ l 4 4 ( _ l 5 4 [ _ l 58 4 ] _ l 4 4 _ [ r 26 5 ( _ r 6 5 [ y r 11 5 ) _ r 16 5 ] y r 16 5 x y l 56 6 ( ( r 6 6 [ [ r 6 6 ) ) r 6 6 ] ] r 6 6 x x r 6 6 _ _ l 8 8 x _ l 15 8 ( ( r 26 8 ) ) r 26 8 [ [ r 26 8 ] ] r 26 8 _ _ r 26 11 ( ( r 11 11 [ [ r 11 11 ) ) r 11 11 ] ] r 11 11 x x r 11 11 _ _ l 13 13 _ x l 24 13 x _ l 15 13 ) ) r 78 13 [ [ r 78 13 ] ] r 78 13 ( ( r 78 15 ( ( l 15 15 ) ) l 15 15 x x l 15 15 [ [ l 15 15 ] ] l 15 15 y [ l 5 15 _ ( l 5 16 ( ( r 16 16 [ [ r 16 16 ) ) r 16 16 ] ] r 16 16 x x r 16 16 _ x l 19 19 x x l 19 19 ( ( l 19 19 ) ) l 19 19 [ [ l 19 19 ] ] l 19 19 y ] l 5 19 _ ) l 5 24 ( ( l 24 24 ) ) l 24 24 [ [ l 24 24 ] ] l 24 24 _ ( r 26 24 y [ r 26 26 ( _ r 27 26 ) y r 31 26 [ _ r 35 26 ] y r 39 26 x x r 51 26 _ ) r 48 27 ( ( r 27 27 ) ) r 27 27 [ [ r 27 27 ] ] r 27 27 x x r 27 27 _ ( l 29 29 ( ( l 29 29 ) ) l 29 29 [ [ l 29 29 ] ] l 29 29 x x l 29 29 _ ( r 26 29 y ) r 26 31 ( ( r 31 31 ) ) r 31 31 [ [ r 31 31 ] ] r 31 31 x x r 31 31 _ ) l 29 35 ( ( r 35 35 ) ) r 35 35 [ [ r 35 35 ] ] r 35 35 x x r 35 35 _ [ l 37 37 ( ( l 37 37 ) ) l 37 37 [ [ l 37 37 ] ] l 37 37 x x l 37 37 _ [ r 26 37 y ] r 26 39 ( ( r 39 39 ) ) r 39 39 [ [ r 39 39 ] ] r 39 39 x x r 39 39 _ ] l 37 43 ( ( l 43 43 ) ) l 43 43 [ [ l 43 43 ] ] l 43 43 x x l 44 43 _ _ r 52 43 y x r 47 44 ( ( l 44 44 ) ) l 44 44 [ [ l 44 44 ] ] l 44 44 y y l 44 44 x y l 43 44 _ [ l 56 47 y y r 47 47 ( ( r 47 47 ) ) r 47 47 [ [ r 47 47 ] ] r 47 47 x x l 48 48 ) ) r 48 48 ] ] r 4 48 x ( r 26 48 _ x l 24 51 ( ( r 51 51 ) ) r 51 51 [ [ r 51 51 ] ] r 51 51 _ x l 43 52 y y r 52 52 ( ( r 52 52 ) ) r 52 52 [ [ r 52 52 ] ] r 52 52 x _ l 53 53 ) ) r 53 53 ] ] r 44 53 _ ( l 56 56 ( ( l 56 56 ) ) l 56 56 [ [ l 56 56 ] ] l 56 56 y y l 56 56 x y l 56 56 _ y r 0 58 ( _ r 59 58 ) _ r 64 58 [ y r 68 58 ] y r 64 58 _ x l 77 59 ( ( r 59 59 [ [ r 59 59 ) ) r 59 59 ] ] r 59 59 x x r 59 59 _ _ l 61 61 x _ l 63 61 ( ( r 58 61 ) ) r 58 61 [ [ r 58 61 ] ] r 58 61 _ _ r 58 63 x x l 63 63 ( ( l 63 63 ) ) l 63 63 ] ] l 63 63 [ [ l 63 63 _ ( l 58 63 y [ l 58 64 ( ( r 64 64 [ [ r 64 64 ) ) r 64 64 ] ] r 64 64 x x r 64 64 _ x l 67 67 x x l 67 67 ( ( l 67 67 ) ) l 67 67 ] ] l 67 67 [ [ l 67 67 _ ) l 58 67 y ] l 58 68 ( ( r 68 68 [ [ r 68 68 ) ) r 68 68 ] ] r 68 68 x x r 68 68 _ _ l 70 70 x _ l 63 70 _ _ l 63 77 ( ( l 77 77 ) ) l 77 77 [ [ l 77 77 ] ] l 77 77 _ ( r 78 78 ( _ r 79 78 ) y r 83 78 [ _ r 87 78 ] y r 91 78 x ( r 95 78 _ ] r 13 79 ( ( r 79 79 ) ) r 79 79 [ [ r 79 79 ] ] r 79 79 x x r 79 79 _ ( l 80 80 ( ( l 80 80 ) ) l 80 80 [ [ l 80 80 ] ] l 80 80 x x l 80 80 _ ( r 78 80 y ) r 78 83 ( ( r 83 83 ) ) r 83 83 [ [ r 83 83 ] ] r 83 83 x x r 83 83 _ ) l 80 87 ( ( r 87 87 ) ) r 87 87 x x r 87 87 [ [ r 87 87 ] ] r 87 87 _ [ l 88 88 ( ( l 88 88 ) ) l 88 88 [ [ l 88 88 x x l 88 88 ] ] l 88 88 _ [ r 78 88 y ] r 78 91 ( ( r 91 91 ) ) r 91 91 x x r 91 91 [ [ r 91 91 ] ] r 91 91 _ ] l 88 95 ( ( r 95 95 ) ) r 95 95 [ [ r 95 95 ] ] r 95 95 _ ( l 56
40 states, 9 colors
4 states reduced: 15, 37, 67, 88.
This is raw version, meaning that there will be probably more improvements later. But the improvement I have in mind might need even more colors.
Input: Multiplier in the form of yyy...yyy, then a hydra without rightmost )'s and ]'s.
0 y y r 0 0 ( ( l 2 0 _ _ r halt 2 ( ( r 2 2 ) ) r 2 2 [ [ r 2 2 x _ l 4 2 ] ] r 2 2 _ _ l 4 2 y x r 2 4 ) _ l 4 4 ( _ l 5 4 [ _ l 58 4 ] _ l 4 4 _ [ r 26 5 ( _ r 6 5 [ y r 11 5 ) } r 16 5 ] > r 16 5 x y l 56 6 ( ( r 6 6 [ [ r 6 6 ) ) r 6 6 ] ] r 6 6 x x r 6 6 _ _ l 8 8 x _ l 15 8 ( ( r 26 8 ) ) r 26 8 [ [ r 26 8 ] ] r 26 8 _ _ r 26 11 ( ( r 11 11 [ [ r 11 11 ) ) r 11 11 ] ] r 11 11 x x r 11 11 _ _ l 13 13 _ x l 24 13 x _ l 15 13 ) ) r 78 13 [ [ r 78 13 ] ] r 78 13 ( ( r 78 15 ( ( l 15 15 ) ) l 15 15 x x l 15 15 [ [ l 15 15 ] ] l 15 15 } ) l 5 15 > ] l 5 15 y [ l 5 15 _ ( l 5 16 ( ( r 16 16 [ [ r 16 16 ) ) r 16 16 ] ] r 16 16 x x r 16 16 _ x l 15 24 ( ( l 24 24 ) ) l 24 24 [ [ l 24 24 ] ] l 24 24 _ ( r 26 24 y [ r 26 26 ( _ r 27 26 ) y r 31 26 [ } r 35 26 ] > r 39 26 x x r 51 26 _ ) r 48 27 ( ( r 27 27 ) ) r 27 27 [ [ r 27 27 ] ] r 27 27 x x r 27 27 _ ( l 29 29 ( ( l 29 29 ) ) l 29 29 [ [ l 29 29 ] ] l 29 29 x x l 29 29 _ ( r 26 29 y ) r 26 29 > ] r 26 29 } [ r 26 31 ( ( r 31 31 ) ) r 31 31 [ [ r 31 31 ] ] r 31 31 x x r 31 31 _ ) l 29 35 ( ( r 35 35 ) ) r 35 35 [ [ r 35 35 ] ] r 35 35 x x r 35 35 _ [ l 29 39 ( ( r 39 39 ) ) r 39 39 [ [ r 39 39 ] ] r 39 39 x x r 39 39 _ ] l 29 43 ( ( l 43 43 ) ) l 43 43 [ [ l 43 43 ] ] l 43 43 x x l 44 43 _ _ r 52 43 y x r 47 44 ( ( l 44 44 ) ) l 44 44 [ [ l 44 44 ] ] l 44 44 y y l 44 44 x y l 43 44 _ [ l 56 47 y y r 47 47 ( ( r 47 47 ) ) r 47 47 [ [ r 47 47 ] ] r 47 47 x x l 48 48 ) ) r 48 48 ] ] r 4 48 x ( r 26 48 _ x l 24 51 ( ( r 51 51 ) ) r 51 51 [ [ r 51 51 ] ] r 51 51 _ x l 43 52 y y r 52 52 ( ( r 52 52 ) ) r 52 52 [ [ r 52 52 ] ] r 52 52 x _ l 53 53 ) ) r 53 53 ] ] r 44 53 _ ( l 56 56 ( ( l 56 56 ) ) l 56 56 [ [ l 56 56 ] ] l 56 56 y y l 56 56 x y l 56 56 _ y r 0 58 ( _ r 59 58 ) } r 64 58 [ y r 68 58 ] > r 64 58 _ x l 77 59 ( ( r 59 59 [ [ r 59 59 ) ) r 59 59 ] ] r 59 59 x x r 59 59 _ _ l 61 61 x _ l 63 61 ( ( r 58 61 ) ) r 58 61 [ [ r 58 61 ] ] r 58 61 _ _ r 58 63 x x l 63 63 ( ( l 63 63 ) ) l 63 63 ] ] l 63 63 [ [ l 63 63 _ ( l 58 63 y [ l 58 63 } ) l 58 63 > ] l 58 64 ( ( r 64 64 [ [ r 64 64 ) ) r 64 64 ] ] r 64 64 x x r 64 64 _ x l 63 68 ( ( r 68 68 [ [ r 68 68 ) ) r 68 68 ] ] r 68 68 x x r 68 68 _ _ l 70 70 x _ l 63 70 _ _ l 63 77 ( ( l 77 77 ) ) l 77 77 [ [ l 77 77 ] ] l 77 77 _ ( r 78 78 ( _ r 79 78 ) y r 83 78 [ } r 87 78 ] > r 91 78 x ( r 95 78 _ ] r 13 79 ( ( r 79 79 ) ) r 79 79 [ [ r 79 79 ] ] r 79 79 x x r 79 79 _ ( l 80 80 ( ( l 80 80 ) ) l 80 80 [ [ l 80 80 ] ] l 80 80 x x l 80 80 _ ( r 78 80 y ) r 78 80 } [ r 78 80 > ] r 78 83 ( ( r 83 83 ) ) r 83 83 [ [ r 83 83 ] ] r 83 83 x x r 83 83 _ ) l 80 87 ( ( r 87 87 ) ) r 87 87 x x r 87 87 [ [ r 87 87 ] ] r 87 87 _ [ l 80 91 ( ( r 91 91 ) ) r 91 91 x x r 91 91 [ [ r 91 91 ] ] r 91 91 _ ] l 80 95 ( ( r 95 95 ) ) r 95 95 [ [ r 95 95 ] ] r 95 95 _ ( l 56
Bounds using (0,1) game machines
They can be made using the 5 color 2 state record holder.
\(\Sigma(94,5) > f_{\vartheta(\varepsilon_{\Omega+1})}(1.7 \cdot 10^{352})\)
\(\Sigma(61,6) > f_{\vartheta(\varepsilon_{\Omega+1})}(1.7 \cdot 10^{352})\)
\(\Sigma(46,7) > f_{\vartheta(\varepsilon_{\Omega+1})}(1.7 \cdot 10^{352})\)
\(\Sigma(42,9) > f_{\vartheta(\varepsilon_{\Omega+1})}(1.7 \cdot 10^{352})\)