
Visual representation of zootzootplex in towers, with parts of the expression solved for that 4321 = 49 = 262,144
Zootzootplex is the exponential factorial of the googolplex, or \(\text{googolplex}^{(\text{googolplex}-1)^{(\text{googolplex}-2)^{.^{.^{.^{4^{3^{2^{1}}}}}}}}}\).[1] It was coined by Andrew Schilling at the age of four. In the hyperfactorial array notation zootzootplex can be expressed as \(\text{googolplex}!1\). It is less than and comparable to googolplexstack.
Approximations in other notations
Notation | Approximation |
---|---|
Arrow notation | \(10^{100}\uparrow\uparrow10^{100}\) |
BEAF | \(\{ \{10,100\},\{10,100\},2\}\) |
Bird's array notation | \(\{ \{10,100\},\{10,100\},2\}\) |
Chained arrow notation | \(10^{100}\rightarrow 10^{100}\rightarrow 2\) |
Hyperfactorial array notation | \(10^{100}!1\) |
Sources
See also
Googol-n-plex: googol · googolplex · googolduplex · googoltriplex · -quadriplex · -quinplex · -sextiplex · -septiplex · -octiplex · -noniplex · -deciplex · -centiplex
Googol-103n-plex: googolmilliplex · -megaplex · -gigaplex · -teraplex · -petaplex · -exaplex · -zettaplex · -yottaplex · -xennaplex · -vekaplex · -mekaplex
Bowers' extensions: giggol · gaggol · geegol · boogol · goobol · more...
Saibian's extensions: googolgong · grangol · greagol · gigangol · more...
Cockburn's extensions: gargoogolplex · fzgoogolplex · fugagoogolplex · megafugagoogolplex
Miscellany: googolteen · googolty · great googol(plex) · googolbang · googolminex · gooprol · little googol/googolbit · zootzootplex