Zootzootplex is the exponential factorial of the googolplex, or \(\text{googolplex}^{(\text{googolplex}-1)^{(\text{googolplex}-2)^{.^{.^{.^{4^{3^{2^{1}}}}}}}}}\).[1] It was coined by Andrew Schilling at the age of four. In the hyperfactorial array notation zootzootplex can be expressed as \(\text{googolplex}!1\). It is less than and comparable to googolplexstack.
Approximations in other notations[]
Notation | Approximation |
---|---|
Arrow notation | \(10^{10^{100} }\uparrow\uparrow10^{10^{100} }\) |
Bird's array notation | \(\{ \{10,\{10,100\}\},\{10,\{10,100\}\},2\}\) |
Chained arrow notation | \(10^{10^{100} }\rightarrow 10^{10^{100} }\rightarrow 2\) |
Hyper-E notation | E183230.68388068097#(EE100-4) |
Hyperfactorial array notation | \(10^{10^{100} }!1\) (definition) |
Fast-growing hierarchy | \(f_3(f_2^2(326))\) |
Sources[]
See also[]
Originals: googol · googolplex
Cockburn's examples: gargoogolplex · fzgoogolplex · (mega)fugagoogolplex
Googol-n-plex: googolduplex · googoltriplex · -quadriplex · -quinplex · -sextiplex · -septiplex · -octiplex · -noniplex · -deciplex · -centiplex
Googol-103n-plex: googolmilliplex · -megaplex · -gigaplex · -teraplex · -petaplex · -exaplex · -zettaplex · -yottaplex · -xennaplex · -vekaplex · -mekaplex
Bowers' extensions: giggol · gaggol · geegol · boogol · biggol · troogol · goobol · more...
Saibian's extensions: googol-minutia · googolchime · googoltoll · googolgong · grangol · greagol · gigangol · gugold · graatagold · gugolthra · throogol · godgahlah · tethrathoth · more...
Miscellany: googolbang (10100!) · googolminex (10^-10100) · googolteen · googolty · great googol(plex) · gooprol · little googol/googolbit · zootzootplex