大數學 维基
Advertisement

康托尔序数是\(\zeta_0\)。或者\(\sup_{n \in \mathbb{N}} \underbrace{\varepsilon_{\varepsilon_{\cdot_{\cdot_{\cdot_{\varepsilon_0}}}}}}_{n \textrm{个} \varepsilon}\),在Madore的ψ函数中。康托尔序数则是\(\psi(\Omega)\)或\(\psi(\psi(\psi(…\psi(0)…)))\)。康托尔序数也可写作\(\varphi(2,0)\)(凡勃伦函数[英语]) 。

基础: 基数 · 普通函数 · 序符号 · 序数
理论: Presburger arithmetic · 皮亚诺算术 · 二阶算术 · ZFC
可数序: \(\omega\) · \(\varepsilon_0\) · \(\zeta_0\) · \(\eta_0\) ·\(\Gamma_0\) · \(\varphi(1,0,0,0)\)(阿克曼序) · \(\psi_0(\Omega^{\Omega^{\omega}})\)(小凡勃伦序) · \(\psi_0(\Omega^{\Omega^{\Omega}})\)(大凡勃伦序) · \(\psi_0(\varepsilon_{\Omega + 1}) = \psi_0(\Omega_2)\)(巴赫曼-霍华德序) · \(\psi_0(\Omega_{\omega})\)(用布赫霍尔茨的\(\psi\)函数) · \(\psi_0(\varepsilon_{\Omega_\omega + 1})\)(塔克第-费佛曼-布克霍尔兹序) · \(\omega_1^\mathfrak{Ch}\) · \(\omega_1^\text{CK}\)(丘奇-克莱尼序) · \(\lambda,\zeta,\Sigma,\gamma\)
非可数基数: \(\omega_1\) · omega fixed point · inaccessible cardinal \(I\) · Mahlo cardinal \(M\) · weakly compact cardinal \(K\) · indescribable cardinal · rank-into-rank cardinal

Advertisement